
Исследование FHE‐based методов
распознавания шаблонов

Иван Тунёв

11 июля 2022 г.

1/26

Гомоморфное шифрование:
неформальное введение

Шифрование «сохраняющее операции»
▶ Но без ветвлений!
▶ … медицинскими данными
▶ … финансовые персональные данные
▶ … энергетические датчики

Честные тайные голосования?
Свежее достижение → 2010 год

2/26

Гомоморфное шифрование:
формально
Определение
Полностью гомоморфное шифрование англ. Fully
Homomorphic Encryption — шифрование, гомоморфное
относительно любых операций над открытыми текстами.
Функция шифрования E(k,m), где m— это открытый текст,
k — ключ, гомоморфна относительно операции ∗, если для
любого ключа и открытых текстов m1,m2 существует
эффективно вычислимая функция M, которая, принимая на
вход пару E(k,m1), E(k,m2), вернёт криптограмму c такую,
что результатом её дешифрования будет m1 ∗m2.
Аналогично вводится понятие гомоморфности
относительно операции+.

3/26

ГШ: Реально работает!
def demo_homomorphic_encription():

Инициализируем HE‐объект Pyfhel
HE = Pyfhel()
Контекст для заданного p
HE.contextGen(p=65537)
HE.keyGen()

integer1 = 47
integer2 = ‐2
ctxt1 = HE.encryptInt(integer1)
ctxt2 = HE.encryptInt(integer2)

print(’ctxt1=’ + str(ctxt1))
print(’ctxt2=’ + str(ctxt2))

Можно выполнять на недоверенной территории
ctxtSum = ctxt1 + ctxt2
ctxtSub = ctxt1 ‐ ctxt2
ctxtMul = ctxt1 * ctxt2

print(’Без расшифровки результаты непонятны:’)
print(’ctxtSum=’ + str(ctxtSum))
print(’ctxtSub=’ + str(ctxtSub))
print(’ctxtMul=’ + str(ctxtMul))

resSum = HE.decryptInt(ctxtSum)
resSub = HE.decryptInt(ctxtSub)
resMul = HE.decryptInt(ctxtMul)

print(’И только мы, расшифровав, сможем узнать:’)
print(’resSum=’ + str(resSum))
print(’resSub=’ + str(resSub))
print(’resMul=’ + str(resMul))

ctxt1=<Pyfhel Ciphertext at 0x7fc05ee0e840, encoding=INTEGER,

size=2/2, noiseBudget=27>

ctxt2=<Pyfhel Ciphertext at 0x7fc0547d97c0, encoding=INTEGER,

size=2/2, noiseBudget=27>

Без расшифровки результаты непонятны:

ctxtSum=<Pyfhel Ciphertext at 0x7fc05386d880, encoding=INTEGER,

size=2/2, noiseBudget=27>

ctxtSub=<Pyfhel Ciphertext at 0x7fc05386d740, encoding=INTEGER,

size=2/2, noiseBudget=27>

ctxtMul=<Pyfhel Ciphertext at 0x7fc05f1ee440, encoding=INTEGER,

size=3/3, noiseBudget=1>

И только мы, расшифровав, сможем узнать:

resSum=45

resSub=49

resMul=‐94

4/26

Гомоморфное шифрование у нас
Запускаем

зашифрованный «алгоритм»
на «недоверенной» территории
и их «открытых» данных

Например:
Поиск вирусов

▶ Не раскрывая сигнатур, по которым они
определяются

Блокирование запрещенных ресурсов «черным
ящиком» у провайдера

▶ Не раскрывая определяющих алгоритмов

«Алгоритмы» → «Регулярные выражения и
конечные автоматы»

5/26

Поставленная цель

Реализовать алгоритм
▶ «Paperwithcode» движение
▶ Максимально компактно
▶ Визуализация структур, потоков

Получить обучающие материалы
▶ Раздел в «криптографию на решетках».
▶ Слайды для лекций.

Материалы для исследований и модификаций

6/26

Изученные статьи

2020 Homomorphic Encryption for Finite
Automata Genise et al.

2020 Obfuscating Finite Automata Steven D. Galbraith
and Lukas Zobernig

2017 Pattern Matching on Encrypted
Streams Desmoulins1 et al.

2016 Packing Messages and Optimizing Bootstrapping in
GSW‐FHE Hiromasa et al.

7/26

Homomorphic Encryption for Finite Automata

Nicholas Genise (Rutgers)∗ Craig Gentry (Algorand Foundation)†

Shai Halevi (Algorand Foundation)† Baiyu Li (UCSD)
Daniele Micciancio (UCSD)

March 16, 2020

Abstract

We describe a somewhat homomorphic GSW-like encryption scheme, natively encrypting
matrices rather than just single elements. This scheme offers much better performance than
existing homomorphic encryption schemes for evaluating encrypted (nondeterministic) finite
automata (NFAs). Differently from GSW, we do not know how to reduce the security of this
scheme from LWE, instead we reduce it from a stronger assumption, that can be thought of as
an inhomogeneous variant of the NTRU assumption. This assumption (that we term iNTRU)
may be useful and interesting in its own right, and we examine a few of its properties. We
also examine methods to encode regular expressions as NFAs, and in particular explore a new
optimization problem, motivated by our application to encrypted NFA evaluation. In this
problem, we seek to minimize the number of states in an NFA for a given expression, subject to
the constraint on the ambiguity of the NFA.

Keywords. Finite Automata, Inhomogeneous NTRU, Homomorphic Encryption, Regular Ex-
pressions.

1 Introduction

Homomorphic encryption (HE) [48] enables computation on encrypted data even without knowing
the secret key. Ten years after Gentry described the first scheme capable of supporting arbitrary
computations [23], we now have an arsenal of several different schemes and variations, with various
capabilities and tradeoffs (see, e.g., [52, 12, 11, 39, 21, 26, 17] for a few examples).

Our original motivation for the current work is the simple example of encrypted virus scan:
consider a center that deploys many remote systems, operating in many different environments,
and wants to protect them against viruses that it knows about. The center would like to periodically
send updated virus signatures to all its systems, and have them scan their systems to check for
infections. The virus signatures, however, could be sensitive, perhaps because some of them are
not yet widely known and exposing the signatures could tip the hand of the center as it develops
countermeasures.

∗This work was done when the author was at UCSD
†This work was done when the authors were in IBM Research

1

A plausible solution would have the center encrypt the virus signatures, the remote systems
could then perform the virus scan on the encrypted signatures, and report the (encrypted) re-
sults to the center. The center could then decrypt, and take appropriate actions when infections
are detected. As virus signatures usually take the form of many small regular expressions1, this
application calls for a homomorphic encryption scheme that can quickly test for a match against
many small regular expressions. Equivalently, it should quickly evaluate (many, encrypted) non-
deterministic finite automata (NFAs) on a given cleartext file. Notice that this is quite different
from, and incomparable to, the DFA computation problem studied in previous works on homomor-
phic encryption, like [22, 18, 19]. Specifically, nondeterminism aside, the crucial difference is that
those works consider the evaluation of a plaintext automaton on an encrypted file. In other words,
the roles of the input and the program are reversed. In our motivating application, the problem
studied in [22, 18, 19] would correspond to searching for arbitrary (possibly nonregular) patterns,
on files described by regular languages, a very unlikely scenario.

Evaluating an encrypted NFA on a cleartext string w = w1 · · ·wk can be done by computing
a product of a single vector v (representing the initial state of the NFA) by many matrices Mwi

(representing the transition matrices of the NFA associated to each input symbol wi). Namely the
operation that we want to support is computing

u :=

(
1∏
i=k

Mwi

)
× v,

(with operations over the integers), where the matrices Mwi and the vector v are encrypted.2 Most
of the HE schemes from above can be used to carry out this computation, but none of them is ideal
for the job. For practical purposes, the homomorphic schemes that offer the best performance are
either the BGV-type schemes (scale-invariant or not), or GSW-type schemes.

BGV-type schemes. These schemes have an advantage that they can use packed ciphertexts,
where each ciphertext encrypts not just one plaintext element but a vector of them, and each
ciphertext operation affects all the elements of the vector simultaneously, cf. [51]. Moreover, they
can even be made to support efficient matrix-vector operations, as was demonstrated in [27].3

However, for BGV-type schemes it is crucial to keep the computation multiplicative depth to a
minimum, which in our case means using a binary multiplication tree. But this means that we have
to use matrix-matrix multiplication4 (rather than the matrix-vector products that are computed
in the sequential procedure). This increases the total work (and hence the computation time) by a
factor equal to the dimension of these matrices — which must be substantial for security reasons.

1For example, many ClamAV virus signatures (https://www.clamav.net/downloads) are regular expressions of
the form Σ∗K1 · · ·Σ∗Kn · Σ∗ with no more than 1K symbols, where Σ is the alphabet and each Ki is a set of a few
hex strings.

2The initial vector v is not required to be encrypted, as it reveals no information about the automaton. However,
the intermediate vectors obtained after each matrix-vector multiplication should be kept secret. So, we will need a
scheme supporting matrix-vector multiplication where both the matrix and the vector are encrypted.

3The techniques in [27] only handle multiplication of plaintext matrices by encrypted vectors, but many of these
tools can be adapted to the case of encrypted matrices.

4Technically, the nodes on the rightmost path of the tree can use matrix-vector multiplications, but this makes
hardly any difference on the efficiency of the overall computation.

2

GSW-type schemes. A major advantage of GSW-like schemes is the asymmetric noise growth,
that makes it possible to handle sequential processing of products [14]. For our purposes, it lets us
evaluate the product while performing only matrix-vector multiplications.

While “textbook GSW” can only encrypt individual elements, it is possible to adapt the
ciphertext-packing techniques from [51] also to GSW, as long as we have a priori bound on the size
of the plaintext vectors that occur in the computation. However porting the matrix-multiplication
optimizations from [27] is far from simple, and we expect significant overhead when trying to
implement it in practice.

In [29], Hiromasa, Abe, and Okamoto proposed a GSW-like FHE scheme that is capable of en-
crypting square matrices and doing homomorphic matrix addition and multiplication. The HAO15
FHE scheme can be viewed as a matrix extension of the standard GSW-FHE scheme, where the
secret key S = [I| − S′] consists of a random secret matrix S′. Like in GSW [26], the decryption
invariant for a ciphertext C encrypting a message M relative to the secret key S is

S×C = M× S×G + E (mod q),

where E is a low-norm error and G is the “gadget matrix” from [43]. Notice that M and S
are both matrices in the matrix-FHE case, whereas in the GSW scheme M is a scalar and S
is a vector. The GSW security reduction [26] from the learning-with-errors (LWE) problem still
applies to the HAO15 scheme, except that an additional circular security assumption is required.
Being able to encrypt matrices in an atomic operation and support homomorphic matrix operations
makes the HAO15 scheme an interesting candidate to use in our application of homomorphic NFA
evaluation. Moreover, as we will show in Section 3.1, the HAO15 scheme with some modification can
also encrypt vectors and homomorphically multiply an encrypted matrix by an encrypted vector.
However, the HAO15 scheme is not optimal due to overhead in the size of keys and ciphertexts. So
we seek to find a better solution that would allow us to scan longer strings with faster execution
times in practice.

1.1 Our New HE Scheme

In this work we introduce a new scheme, that can be viewed as another GSW-type encryption for
matrices but with a different hardness assumption. (Alternatively, it can be viewed as a variant
of the GGH15 graded encoding [24], but with no zero-test parameter.) In addition, our scheme
can also encrypt vectors and natively support homomorphic matrix-vector multiplication. Similar
to the HAO15 scheme, the decryption invariant in our scheme for a ciphertext C ← EncS(M)
encrypting a matrix M is also S×C = MSG + E (mod q), where E is a low-norm error matrix.5

Differently from the HAO15 scheme, in our construction we assume that the key S is a square
invertible matrix, and so we can express the ciphertext as C := S−1(M× S×G + E) mod q. As a
result, both keys and ciphertexts are smaller in our scheme.

The operations of the scheme, and the analysis of the noise development are identical to the
GSW scheme, except that here we typically cannot ensure that the plaintext size never grows, and
instead must use properties of the application to reason about the plaintext size.

When it comes to security, however, we can no longer use the GSW reduction [26] from the LWE
problem. That reduction relies heavily on the scalar M commuting with the vector S, which no
longer holds in our case. Instead, we reduce the security of this scheme from a stonger assumption,

5As we describe later, we use a slightly different variant to encrypt the vector v.

3

that can be viewed as an inhomogeneous version of NTRU (or alternatively as an LWE instance
with an additional hint).

1.2 The iNTRU Hardness Assumption

Recall that in LWE6, we are given two matrices A,B ∈ Zn×mq (m > n), with A a uniformly random
matrix, and need to decide if B is also a uniformly random matrix, or it is chosen as B = SA + E
with a uniform S ∈ Zn×nq and a low-norm E ∈ Zn×mq .

It is easy to see that this problem becomes easy if we are also given a trapdoor for the matrix A,
in this case it is even easy to recover the secret matrix S when B = SA+E. But what if we are given
a trapdoor for the matrix B instead? In this case we do not know of any effective distinguisher, so
we assume that the decision problem is still hard and show a hardness reduction from this version
of LWE to our hardness assumption, iNTRU, in Section 4. We remark that this “LWE with a
trapdoor for B” assumption is not standard and it deserves further study.

Once we know a trapdoor for B, we might as well consider the case where B is the gadget
matrix G (for which everyone knows a trapdoor). Namely we assume that the following decision
problem is hard:

iNTRU. As in LWE, we have the parameters n,m, q, with m > n log q and q > m. The input is
a matrix A ∈ Zn×mq , which is either uniform in Zn×mq , or is set as A := S−1(G − E) mod q (with
S ∈ Zn×nq a random invertible matrix, G the gadget matrix, and E a low-norm matrix). The goal
is to decide which is the case.

One can think of the above problem as an inhomogeneous version of NTRU, over matrices, as
follows. Recall that in the NTRU cryptosystem [30], the secret key is given by two polynomials
(or ring elements) with small coefficients f, g, and the corresponding public key is the product h =
f−1 ·g. The NTRU cryptosystem can be proved secure under the assumption that this public key h
is pseudorandom, i.e., indistinguishable from a uniformly random polynomial (or ring element) with
arbitrary coefficients. We extend this assumption as follows. First, we replace g with a sequence of
vectors g1, . . . , gk, chosen independently at random, with small coefficients. Then, the assumption is
that f−1g1, f

−1g2, . . . , f
−1gk is pseudorandom. This is a simple syntactic extension of NTRU (that

would allow, for example, the encryption of longer messages), akin to changing some parameter,
and not a qualitative change in the security assumption. Next, we add a (known, constant) “shift”,
replacing each gi with (2i−1− gi), and still requiring f−1(1− g1), f−1(2− g2), . . . , f−1(2k−1− gk) to
be indistinguishable from uniform. We call this the “inhomogeneous” NTRU assumption. Finally,
instead of working over a ring of polynomials of degree n, we replace each f, g1, . . . , gk with a
square n× n random matrix with small entries. Intuitively, moving from polynomial rings (which
are commutative) to the ring of matrices, should only make the assumption weaker, though we do
not know how to prove a formal relation between the two problems. This last problem is essentially
equivalent to the pseudorandomness of A = S−1(G − E), where E = [E0| . . . |Ek] is a random
matrix with small entries, and G = [0|I|2I| . . . |2k−1I] is a constant known matrix. In fact, putting
A in Hermite Normal Form [42] “cancels out” the S matrix, and gives a sequence of square matrices
−E−1

0 (2Ii−1−Ei), corresponding to the matrix version of our inhomogeneous NTRU problem7 with
f = −E0 and gi = Ei.

6Here we refer to the multiple-secret variant of LWE, which can be reduced from the normal LWE.
7Matrix-NTRU has been used in lattice-based signatures [6], though the most efficient versions of these lattice

signatures use the standard, algebraic NTRU assumption.

4

1.3 From Regular Expression to NFAs

While our scheme directly supports the evaluation of (encrypted) NFAs, patterns (e.g., virus sig-
natures) are typically, and most conveniently, represented by regular expressions. Since the noise
growth of our homomorphic encryption scheme depends on the details of the NFA being evaluated
and its computations, the conversion of regular expressions to NFA is a critical part of our appli-
cation. In Section 5 we describe a specific conversion following the method of [15, 4] based on the
use of partial derivatives of regular expressions, which is both very elegant and efficient. Deriva-
tives of regular expressions [15] are themselves regular expressions and they are defined similarly
to formal derivatives of arithmetic expressions, e.g., da(e0 + e1) = da(e0) + da(e1) for the sum (set
union) operation, and da(e

∗) = da(e)e
∗ for exponentiation (Kleene star). Informally, when parsing

an input string according to regular expression e, the derivative da(e) represents the part of the
input to be expected after reading a first symbol “a”. A regular expression e can be converted
into an automaton with states labeled by derivatives (modulo a natural equivalence relation on
regular expressions), and transitions of the form e

a→ da(e). A classical result of Brzozowski [15]
shows that this produces an automaton with a finite number of states, and, in fact, the minimal
DFA of the regular expression. As our homomorphic encryption scheme supports the evaluation
of nondeterministic automata, we are interested in the conversion of regular expressions to NFAs,
which are potentially much smaller than the equivalent minimal DFA. However, optimizing NFAs
in our application is far from trivial. To start with, in stark contrast to the DFA case, minimizing
the number of states of an NFA is a PSPACE-complete problem. Moreover, due to noise growth,
minimizing the number of states may not even be the right goal for our homomorphic encryption
application. We address the first issue by using the partial derivative construction of [4], where a
partial derivative ∂a(e) maps an expression e to a set of regular expressions (representing possi-
ble nondeterministic choices), and in particular ∂a(e0 + e1) = ∂a(e0) ∪ ∂a(e1). This construction
results in NFAs that, while not necessarily minimal, have a very small number of states, bounded
by the number of alphabet symbols in the input regular expression. In order to bound the noise
growth, we show that a simple optimization of the homomorphic NFA evaluation procedure8 allows
to relate the noise growth to the degree of ambiguity of the NFA, a standard quantity studied in
automata theory, which can be evaluated in polynomial time [54]. We reduce the problem of finding
an optimal noise to a variant of NFA minimization problem with bounded ambiguity. Although
solving this optimization problem is hard in general, we use techniques of determining ambiguity in
Section 5 to explore some tradeoffs between automata size and degree of ambiguity/noise growth.

1.4 Implementation and Performance

We implemented our scheme in C++ using the Number Theory Library (NTL) and describe its
details in Section 6. Despite being a simple implementation without optimizations, the on-line
pattern matching was exceptionally fast. For example, we could homomorphically match a 65536
bit string in 394 seconds on an encrypted NFA with 1024 states of size 66Mb. Using the same set
of parameters, we estimate that an HAO15 implementation can only match up to 16000 bits with
a slower execution time and a bigger program size. More performance details and comparisons can
be found in Section 6.

8Namely, one can let the initial state vector v be an “errorless” encryption, because the initial state does not
reveal any information about the rest of the automaton.

5

1.5 Related Work

As already mentioned, the problem of homomorphically evaluating finite automata or branching
programs has been considered before [14, 22, 18, 19], but in a very different context, where the
branching program or automaton are publicly known, and the computation is performed homo-
morphically on an encrypted input string. This is motivated, for example, by applications to FHE
bootstrapping, where the program is specified by the publicly known decryption/refreshing proce-
dure, and the input in the (encrypted) secret key. In our setting, the role of the program and input
are reversed, and we want the computation to be homomorphic on the automaton, rather than
the input string. In the case of general computation, program and input are easily interchanged
using a universal Turing machine. But in the case of restricted models of computation, like finite
automata, swapping the program and the input results in a completely different problem.

On the relation with other matrix-FHE schemes. As we mentioned earlier, the HAO15 [29]
FHE scheme is also capable of encrypting square matrices and doing homomorphic matrix addition
and multiplication on ciphertexts. In the private-key version of their scheme, the secrete key is
S = [Ir| − S′] for a secret matrix S′, and a matrix M ∈ Zr×r is encrypted as

C =

(
S′A + E

A

)
+

(
MS

0

)
×G mod q,

where A← Zn×Nq , E← χr×N for N = (n+ r) dlog qe.
It may be tempting to claim that our scheme is the same as the HAO15 scheme due to having the

same decryption invariant SC = MSG + E. However, these two schemes are not quite identical.
The relation between them is very similar to the relation between NTRU and RLWE Regev-
like schemes9, where the difference is that the secret key S is a small square matrix for NTRU
(representing multiply-by-s in the ring), whereas the secret key is S = [I|S′] in RLWE (where S′

represents multiply-by-s′ in the ring). Notice that, instead of the Regev invariant, both the HAO15
scheme and our scheme use the GSW-like invariant SC = MSG + E for a small noise matrix E.

More specifically, in our scheme the secret key S is a small square matrix that must be invertible,
while in HAO15 we have S = [I| − S′] where S′ can be any random matrix. Consider the “leveled
versions” of the HAO15 scheme and our scheme, in which the secret key matrices S0,S1, . . . ,SL
are generated such that Si is used to encrypt the matrices in level i of the computation. In both
schemes it holds that

SiCi = MSi+1G + Ei.

The security of the HAO15 scheme can be reduced from the standard LWE assumption, while our
scheme relies on the NTRU-like assumption that we introduce. On the other hand, our scheme
is more efficient: we encrypt a matrix M ∈ Zr×rq in a ciphertext matrix of dimension max(r, λ),
whereas the HAO15 scheme requires a dimension r + λ ciphertext matrix. One can view our
scheme as an NTRU-like variant of the HAO15 scheme (or perhaps an NTRU-like variant of the
GSW scheme). From that viewpoint, we introduce in this work the assumption that lets us adapt
NTRU to get a GSW-like scheme.

9Consider writing both NTRU and RLWE-Regev in matrix form, representing ring elements by their matrices: In
both NTRU and RLWE-Regev we have a ciphertext matrix C encrypting a plaintext matrix M relative to the secret
matrix S (and plaintext space mod p) if SC = M + pE mod q.

6

When applied to homomorphically evaluating NFAs, the efficiency advantage of our scheme
is more significant. Note that the HAO15 scheme can be used to do homomorphic matrix-vector
multiplication as well. But, since we rely on an NTRU-like assumption, the noise bound in our
scheme is smaller than the noise bound in the HAO15 scheme, which allows us to homomorphi-
cally evaluate longer strings with the same lattice parameters. In terms of the complexity of the
homomorphic computation on encrypted NFAs, our scheme runs faster than the HAO15 scheme
in practice due to smaller ciphertexts. For more detailed performance comparison, we refer the
readers to Section 6 and Appendix C.

Recently, Wang et. al. [53] proposed another matrix-FHE scheme, similar to [11], that has
smaller ciphertexts than the HAO15 scheme and can be reduced from the standard LWE assump-
tion. We note that it is possible to perform homomorphic matrix-vector multiplication in their
scheme. However, their scheme relies heavily on tensor product to perform homomorphic mul-
tiplication, so the security and the complexity of applying their scheme to homomorphic NFA
computation is at least on the same level as the HAO15 scheme.

2 Preliminaries

We denote vectors by lower-case bold letters (e.g., v), and we assume they are always in column
form. We denote matrices by upper-case bold letters (e.g., M). A distribution D over a finite set X
is ε-uniform if its statistical distance from the uniform distribution over X is at most ε, where the
statistical difference between two distributions D1,D2 over a finite domain X is 1

2

∑
x∈X |D1(x) −

D2(x)|. We denote by x ← D drawing x from the distribution D, and for a set X we denote by
x← X drawing x uniformly at random from X.

2.1 Leftover Hash Lemma

A distribution D over X has min-entropy k if maxx∈X D(x) = 2−k. A family H of hash functions
from X to Y (with Y a finite set) is said to be 2-universal if for all distinct x, x′ ∈ X, Prh←H[h(x) =
h(x′)] = 1/|Y |.

Lemma 2.1. (Leftover Hash Lemma [28]). Let H be a family of 2-universal hash functions from
X to Y , and let D be a distribution over X with min-entropy k. Suppose that h ← H and x ← D
are chosen independently, then, (h, h(x)) is (1

2

√
|Y |/2k)-uniform over H× Y .

In this work we apply Lemma 2.1 to the hashing family H : Zmq → Znq defined by

H = {hA(v) = Av mod q}A∈Zn×m
q

,

(which is clearly 2-universal). In particular we use the following corollary:

Corollary 2.2. Fix the integers k, n,m,m′, q, and let D1,D2, . . . ,Dm be independent distributions
over Zmq , all with min-entropy at least k. Let D be a distribution over matrices R ∈ Zm×m′q , where
the i’th column is drawn from Di. Then the distribution

{(A,AR mod q) : A← Zn×mq ,R← D}

is (m
′

2

√
qn/2k)-uniform over Zn×mq × Zn×m′q .

7

2.2 Gadget Lattice Sampling

Definitions. We consider the norm of a matrix as the length of its longest column in the l2 norm.
A lattice Λ is a discrete subgroup of Rn (we only consider full-rank, integer lattices). It can be
represented by a basis B ∈ Zn×n where the lattice is the set of all integer combinations of B’s
columns. Let G = [I|2I| · · · |2`−1I] ∈ Zn×n`q where ` = dlog2(q)e. The G-lattice for a fixed modulus

q is Λ⊥q (G) = {x ∈ Zn` : Gx mod q = 0}. The distribution sampled over Λ⊥q (G) and its integer
cosets is the discrete gaussian, a gaussian distribution conditioned on being in the lattice. The
probability a sample equals some lattice coset vector y is proportional to exp(−π‖y‖2/s2) where
s > 0 is the width of the gaussian (we are only concerned with 0-centered distributions). Denote
a discrete gaussian of width s on a lattice coset Λ + c as DΛ+c,s. We can efficiently sample from
DΛ⊥q (G)+v,s for any q ≥ 2 and s ≥

√
5 ln(2n`+ 4)/π (Theorem 4.1 [43] and Lemma 2.3 [13]). We

denote G−1(v) as a discrete gaussian vector y such that Gy = v mod q. Further, we assume the
width is set just above twice the smoothing parameter (defined below) of the G-lattice.

Concentration and min-entropy. The smoothing parameter [44] of a lattice is needed for our
purposes, and it is denoted as ηε(Λ) for an ε > 0. Informally, this is the smallest width for which a
discrete gaussian shares many properties of the continuous gaussian distribution. If B is a basis with
minimum Gram-Schmidt norm ‖B̃‖, we can bound the smoothing parameter ηε(Λ) ≤ ‖B̃‖ω(

√
log n)

for negligible ε(n) = n−ω(1) [25]. Discrete gaussian samples’ l2 norms are bounded by their width
as follows.

Lemma 2.3. (Lemma 1.5 [7]) Let Λ ⊂ Rn be a lattice, r ≥ ηε(Λ) for some ε ∈ (0, 1), and c ∈ Rn.
Then,

Pr(‖DΛ+c,r ≥ r
√
n‖) ≤ 2−n ·

(
1 + ε

1− ε

)
.

Therefore, we can efficiently sample a discrete gaussian G−1(·) with length less than Õ(
√
n log q)10

with overwhelming probability, and assume G−1(·)’s support is Zn`q . Since we will be using the
leftover hash lemma on discrete gaussian input, we will use the following lemma on the min-entropy
of a discrete gaussian. Further, the proof of Lemma 2.4 is identical to the proof of [46, Lemma
2.11].

Lemma 2.4. (Lemma 2.11 [46]) Let Λ + v ⊂ Rn be a lattice coset, c > 0, and s ≥ 21+cηε(Λ) for
ε ∈ (0, 1). Then for any y ∈ Λ + v and for x← DΛ+v,s,

Pr(x = y) ≤ 2−n(1+c)

(
1 + ε

1− ε

)
.

Leftover Hash Lemma with G−1(·). Let m = n`, now we can replace the distributions Di
in Corollary 2.2 with independent discrete gaussian samples G−1(v) (with potential repeats in
the coset vector v). Let R ← G−1(X) in Corollary 2.2 for some X ∈ Zn×m′q with R’s columns
sampled independently. Then by the lemmas above, the min-entropy a column of R is at least
n(1 + c) log q − 2 whenever G−1(·)’s width is just above twice ηε(Λ

⊥
q (G)) for any ε ∈ (0, 1/2]. Say

we let c = logq(2) in Lemma 2.4. This implies the distribution

{(A,AR mod q) : A← Zn×mq ,R← G−1(X)}
10Õ(·) hides poly-logarithmic factors in n.

8

is O(m′2−n/2)-uniform for any X ∈ Zm×m′q .

3 The Schemes

Given an NFA M of r states over a finite alphabet Σ, we denote by Mσ ∈ {0, 1}r×r the transition
matrix of M for each input symbol σ ∈ Σ, where (Mσ)j,i = 1 if and only if there is a transition
from state i to state j on σ. Let v ∈ {0, 1}r be the vector representing the initial states. To check
if a string w = w1 · · ·wk ∈ Σ∗ is accepted by M, we simply check whether there are any non-zero
entries in the vector (

∏1
i=k Mwi)×v that correspond to final states. So we need a scheme that can

compute matrix-vector multiplication homomorphically over encrypted matrices and vectors.

3.1 The HAO15 matrix-FHE scheme [29]

The FHE scheme from [29] can be extended to support homomorphic matrix-vector multiplication.
We first recall the private-key version of the HAO15 scheme, and we then slightly extend it for
vector encryption and homomorphic matrix-vector multiplication. For a given security parameter
λ, choose lattice parameters n,m, q and a noise distribution χ over Zq. Let ` = dlog qe, m =
(n + r) log q, and N = (n + r)`. Here we describe a leveled version of the HAO15 scheme that
supports multiplication depth up to k ≥ 1. We abuse notation and have G = [0|I|2I| · · · |2`−1I] in
this subsection.

Key generation. Same as in HAO15, the secret key for level i ≥ 0 is set to ski := Si = [Ir|−S′i],
where S′i ← χr×n.

Matrix encryption. Given a plaintext matrix M ∈ {0, 1}r×r and a level i ≥ 0, to encrypt it for
the i’th level of computation, the HAO15 scheme outputs

C := HAO.MatEncski(M) =

(
S′iA

′ + E

A′

)
+

(
MSi−1

0n×(n+r)

)
G mod q,

where A′ ← Zn×Nq and E ← χr×N . For i = 0, we consider S−1 = [Ir|0r×n]. Notice that C ∈
Z(r+n)×N
q . The decryption procedure is exactly the same as in [29], but we skip it as it is not

needed in our application.

Vector encryption and decryption. For a vector v ∈ Zrq, we can follow the same idea as in
the matrix encryption procedure, except that we do not multiply v by S nor G. Since we only
need to encrypt the initial state vector to evaluate an NFA, we always encrypt a vector using the
secret key for the first level:

c := HAO.VecEncsk0(v) =

(
S′0a + e

a

)
+

(
v

0n

)
mod q,

where a ← Znq and e ← χr. Note that c has dimension r + n. To decrypt a ciphertext vector c
from the i’th level of a computation, output the vector

v′ := HAO.VecDecski(c) = dSicc2 .

9

Homomorphic operations. To add and multiply two ciphertext matrices C1 and C2, we fol-
low [29]: HAO.Add(C1,C2) = C1 + C2, and HAO.Mul(C1,C2) = C1 ×G−1(C2). To multiply a
ciphertext matrix C by an encrypted vector c, output

HAO.Mul(C, c) := C×G−1(c).

The security of this extended scheme can be proved in the same way as in [29], reducing from
the standard DLWEn,m,q,χ hardness assumption. It is easy to check that, if C is an encryption of
M ∈ {0, 1}r×r for level i and c is an encryption of v of level i−1, then Si×(C×G−1(c)) = Mv+e′

for some low norm error vector e′. More generally, for any Mi ∈ {0, 1}r×r for i = 1, . . . , k and
v ∈ Zrq, if Ci ← HAO.MatEncski(Mi) with an error matrix Ei for each i, c0 ← HAO.VecEncsk0(v)

with an error vector e, and ci ← HAO.Mul(Ci, ci−1) for i = 1, . . . , k, then Sk×ck = (
∏1
j=k Mj)v+ek

where

ek = EkG
−1(ck−1) +

k∑
i=2

(

i∏
j=k

Mj)Ei−1G
−1(ci−2) + (

1∏
j=k

Mj)e.

The l∞ norm of ek can be bounded by

‖ek‖∞ ≤ χN(1 + k max
1≤i≤k

‖
i∏

j=k

Mj‖∞). (1)

To successfully decrypt ck, we require ‖ek‖∞ ≤ q/8 as in [29].

3.2 Our new matrix-HE scheme

To achieve sufficient level of security and a desired capability of homomorphic NFA evaluation, we
may need to use a large lattice dimension n in practice. The above extension of the HAO15 scheme
seems suboptimal with an overhead n in ciphertext dimension. In this section we describe a new
matrix homomorphic encryption scheme that supports atomic matrix and vector encryption and
matrix-vector multiplication. Our scheme is more efficient in practical applications.

Fix integer parameters n,m, q (to be determined later) and an error distribution χ over Zq
that outputs with high probability integers of magnitude � q. Given any NFA with r ≤ n states,
we pad its transition matrices Mσ with 0 entries such that Mσ ∈ {0, 1}n×n for all σ ∈ Σ. For
our application we use two variants of (private-key) encryption, one for matrices and the other
for vectors. Both variants share a noise-sampling procedure, that takes as input the secret key
and another vector (that comes from the plaintext) and outputs a noise vector for use in the
encryption (which may be different than just sampling from χ). We denote this procedure by
e← NoiseSamp(sk,v), and will describe it later in this section.

Key generation. We draw two matrices using χ, a square matrix S ← χn×n and a rectangular
E ← χn×m (which is only used in the NoiseSamp procedure). We insist that S is invertible, and
re-sample if it is not (which happens with a small probability ≈ 1/q). The secret key is sk := (S,E).

The NoiseSamp procedure. To prove semantic security of our encryption method, we need a
somewhat convoluted procedure for sampling the noise. Specifically, the procedure NoiseSamp((S,E),v)
begins by sampling r← G−1(v), then outputs e := E× r mod q.

10

Basic “encryption” transformation. Underlying both the vector and matrix encryption pro-
cedure, is the following “encryption” procedure (in quotes, since it does not have a matching
decryption procedure). Given the secret key sk = (S,E) and a vector v ∈ Znq , we draw a noise
vector e← NoiseSamp(sk,v), then output the “ciphertext”

c := Enc∗sk(v) = S−1(v + e).

We remark that the low-order bits of v are lost in this transformation, due the added noise. Still,
the “ciphertext” satisfies the property that Sc ≈ v, up to the low-norm noise vector e.

We provide in Section 4 a detailed proof that the procedure above provides semantic security
for v, under the inhomogeneous NTRU hardness assumption.

Vector encryption and decryption. As with Regev encryption [47], to convert the above to
real encryption we just need to multiply v by a large enough scalar β so that ‖e‖∞ < β with high
probability. Let b be an upper bound on the l∞ norm of vectors that can be dealt with (which
depends on the application), we assume that b� q and set β := bq/bc.

To encrypt a vector v ∈ Znb we just set c := VecEncsk(v) = Enc∗sk(β · v). To decrypt we set
u := S× c = β · v + e (mod q), then decode each entry of u to the nearest multiple of β. Namely,
we decrypt as

v := VecDecsk(c) =

⌈
b · (S× c mod q)

q

⌋
.

Matrix encryption and decryption. Matrix encryption is similar, except that instead of just
multiplying by a large scalar, we use the GSW technique of redundant encoding using G.

The “native plaintext space” consists of square matrices M ∈ Zn×nq . To encrypt M we first
compute M′ = M×G (mod q) and let m′j be the j’th column of M′ (j = 1, . . . ,m). Then we set

cj := Enc∗sk(m
′
j), and C := MatEncsk(M) = [c1|c2| . . . |cm].

Note that the ciphertext C has the form C = S−1 × (MG + E′), where E′ is the low-norm matrix
consisting of all the noise vectors that were drawn inside of Enc∗sk. In other words, the property
that this ciphertext satisfies is S×C ≈M×G, up to the low-norm error matrix E′.

In our application we never need to decrypt matrices, but note that we could compute U :=
S×C = MG+E′ (mod q), and then recover M from U (since E′ is low norm and G is the gadget
matrix that has a known trapdoor).

3.3 A Leveled NFA-Homomorphic Scheme

Computing a single product chain. To enable homomorphic computation of a product of k
matrices by a vector, (

∏1
i=k Mi) × v, we choose k + 1 secret keys as above, ski = (Si,Ei), for

i = 0, 1, . . . , k. We then encrypt the vector v under the first key sk0, and for 1 ≤ i ≤ k we use ski
to encrypt the matrix M′

i = Mi × Si−1. In other words, we prepare the ciphertexts

c = S−1
0 × (βv + e) mod q,

and
Ci = S−1

i × (MiSi−1G + E′i) mod q, for i = 1, . . . , k,

11

where the noise vectors/matrices are all low-norm. To perform the homomorphic computation, we
initialize c0 := c, and then repeatedly set

ci := Ci ×G−1(ci−1) mod q,

outputting the final vector ciphertext ck. We now show (by induction) that for every i, the vector
ciphertext ci is a valid encryption of the plaintext vector vi = (

∏1
j=i Mj) × v under the key ski.

This holds by definition for v0 = v, so we now assume that it holds for i ≥ 0 and show for i + 1.
By assumption we have

ci = S−1
i × (βvi + ei),

for some low-norm noise vector ei. Hence we get

ci+1 = Ci+1 ×G−1(ci) = S−1
i+1 × (Mi+1SiG + E′i+1)×G−1(ci)

= S−1
i+1 ×

(
Mi+1Si × ci + E′i+1 ×G−1(ci)

)
= S−1

i+1 ×
(
Mi+1Si × S−1

i × (βvi + ei) + E′i+1 ×G−1(ci)
)

= S−1
i+1 ×

(
βMi+1vi︸ ︷︷ ︸

vi+1

+ Mi+1ei + E′i+1 ×G−1(ci)︸ ︷︷ ︸
ei+1

)
.

Since ei,E
′
i+1, and G−1(ci) are all low norm, the noise term ei+1 will be low norm as long as Mi+1

is. We conclude that ck = S−1
k (βvk + ek) (mod q), where the noise term is

ek =
(1∏
j=k

Mj

)
e +

k∑
i=2

(i∏
j=k

Mj

)
E′i−1G

−1(ci−2) + E′kG
−1(ck−1) (mod q). (2)

Hence as long as all the products
∏i
j=k Mj have low norm, the final noise term ek will also have

low norm. We will present a detailed analysis on the bounds of the noise terms in relation with
NFAs in Section 5.

Encrypting and evaluating an NFA. To be able to evaluate this NFA on strings of up to k sym-
bols, we set the parameters so that β = bq/bc is sufficiently larger than maxw∈Σ≤k ‖

∏1
i=|w|Mwi‖∞,

then choose k + 1 secret keys ski for i = 0, . . . , k. We encrypt the initial state vector v under sk0,
and encrypt each of the matrices Mσ for σ ∈ Σ under all the other keys. Namely we set

c = VecEncsk0(v), and Cσ,i = MatEncski(MσSi−1) for i = 1, . . . , k.

Clearly this method provides semantic security for the NFA, so long as the basic “encryption”
transformation from above is semantically secure.

To evaluate the encrypted NFA on a k-symbol string w1w2 . . . wk, we apply the chain-product
procedure from above to evaluate homomorphically the product (

∏1
i=k Mwi) × v. Namely we set

c′0 = c and then c′i = Cwi,i ×G−1(c′i−1) for i = 1, . . . , k. At the end of the evaluation, we decrypt
the final ciphertext c′k to u = VecDecskk(c′k) and check if the computation is accepting.

Circular Security for Better Efficiency. As usual, we can improve efficiency by assuming
circular security of the encryption. Namely, instead of choosing all the secret keys independently,
we choose just a single secret key and use it everywhere. This means that we only need the
ciphertexts

c = S−1 × (βv + e), and Cσ = S−1 × (MσSG + Eσ) for each σ ∈ Σ.

12

3.4 The Parameters

To determine the parameters that are needed for certain NFA (or a class of NFAs) on k-symbol
strings, we first need an upper bound on the size of the plaintext, specifically

Bptxt ≥ max
w∈Σ≤k

‖
1∏

i=|w|

Mwi‖∞.

(See Section 5 for methods of converting regular expressions to NFAs while keeping this bound
small.) Once we have the bound Bptxt, we use it on Equation 2 to compute a high probability
bound on the expression

B∗ ≥ ‖Bptxt · e + k ·Bptxt ·E×G−1(c)‖,

where e,E are noise terms that are output by the NoiseSamp procedure. This value B∗ bounds
with high probability the size of the noise that we can get when evaluating the NFA, and so we
need to choose q > B∗ ·Bptxt (since our plaintext can be as large as Bptxt).

At the same time, we need to set n large enough relative to q to ensure the required security
level (say q < 2n/λ), and m > O(n log q) (since we rely on the leftover hash lemma). As usual with
lattice-based systems, there is a weak circular dependence between these constraints, but it is not
hard to find values that satisfy them all.

4 Security Analysis

Below we define (two variants of) the inhomogeneous NTRU problem, one over a ring and one
over integer matrices. We describe some properties of this problem, and show that hardness of the
matrix variant implies the security of our encryption scheme.

4.1 Inhomogeneous NTRU

We begin with the ring variant of our hardness assumption. Fix a ring R, a modulus q, and an
error distribution χ over R, producing with overwhelming probability elements with norm� q and
−χ = χ. Denoting ` = dlog qe, the iNTRU distribution with these parameters is defined as follows:

iNTRU =

draw s← R/qR, and ei ← χ, for i = 0, . . . , `,
set a0 := e0/s mod q,
and ai := (2i−1 − ei)/s mod q for i = 1, . . . , `,

output (a0, . . . , a`−1)

 . (3)

The inhomogeneous NTRU problem is to distinguish between this distribution and the uniform
distribution over (R/qR)`.

In the matrix variant of this assumption, the ring elements s, ei are replaced by n-by-n integer
matrices, and the ai’s are similarly replaced with matrices A0 := −S−1×E0, Ai := S−1×(2iI−Ei).
In matrix notation, let m′ = n(` + 1) and G′ be the gadget matrix11 G′ = [0|I|2I|4I| . . . |2`−1I] ∈
Zn×m′ , and let χ be a distribution over Z, producing with overwhelming probability integers of

11We use a slightly larger gadget matrix than usual, with an extra first block. The reason will become clear when
we prove Lemma 4.1 below.

13

magnitude � q. The matrix-iNTRU distribution (MiNTRU) with these parameters is defined as
follows:

MiNTRU =

{
draw S← Zn×nq , and E′ ← χn×m

′
,

output A′ := S−1 × (G′ −E′) mod q

}
. (4)

As before, the hardness assumption says that MiNTRU is pseudorandom, namely that the matrix
A′ is indistinguishable from a matrix uniform in Zn×m′q .

4.1.1 Small-Secret Inhomogeneous NTRU

Similarly to LWE, here too we can prove that the inhomogeneous NTRU problem remains hard
even when the secret is chosen from the error distribution. We lose a little on parameters in the
conversion, specifically the extra block at the beginning of G′. With the parameters n,m′, q, χ
as above, let m = n dlog qe = m′ − n, and G = [I|2I|4I| . . . |2`−1I] ∈ Zn×m. The matrix-iNTRU
distribution with small secret (MiNTRUs) is as follows:

MiNTRUs =

{
draw S← χn×n, and E← χn×m,

output A := S−1 × (G−E) mod q

}
. (5)

Lemma 4.1. For the parameters n,m,m′, q, χ as above, if MiNTRU is pseudorandom in Zn×m′q ,
then MiNTRUs is pseudorandom in Zn×mq .

Proof. We show that if we could distinguish MiNTRUs from uniformly random n-by-m matrices
over Zq then we could also distinguish MiNTRU from uniformly random n-by-m′ matrices over Zq.
Given a MiNTRU instance that we want to distinguish, A′ = [A′0|A′1| . . . |A′`] (with A′i ∈ Zn×nq),
we set

Ai = A′0
−1 ×A′i mod q, for i = 1, . . . , `,

(aborting if A′0 is not invertible), then run the MiNTRUs distinguisher on A = [A1|A2| . . . |A`].
Observe that if A′ is uniformly random then so is A, and if A′ is chosen from the MiNTRU
distribution then

Ai = A′0
−1 ×A′i = −E′0

−1 × S× S−1 × (2i−1I−E′i) = −E′0
−1 × (2i−1I−E′i),

for i = 1, . . . , `, and hence A follows the MiNTRUs distribution as needed.

4.2 Security Reduction

We next show that pseudorandomness of MiNTRUs (or equivalently MiNTRU) with some error
distribution χ, implies the semantic security of our scheme with a related error distribution (but
not quite the same). Specifically, let n,m, q, χ be the parameters of the MiNTRUs distribution
above. For a fixed pair of matrices E,Y ∈ Zn×mq , consider the distribution

ψ[E,Y] = {R← G−1(Y), output E×R mod q}.

In the provable version of our scheme, the secret key includes the square invertible matrix S← χn×n,
and in addition a fixed error matrix E← χn×m, and we use the error distribution ψ[E,M×G] when
encrypting a matrix M ∈ Zn×nq . Namely we draw a sample R← G−1(MG) ∈ Zm×mq , then output
the ciphertext C := S−1× (MG−ER) mod q. Note that given a MiNTRUs sample S−1× (G−E),
one can efficiently generate samples of the form S−1 × (MiG− ER). This means Proposition 4.2
is a reduction from CPA security to distinguishing a single MiNTRUs sample.

14

Proposition 4.2. If MiNTRUs is pseudorandom, then our encryption scheme using the error
distribution ψ[E,M×G] is semantically secure.

Proof. We use the “real-or-random” formulation of semantic security for secret-key encryption [9].
Namely, we have a challenger that chooses a secret key sk = (S,E), where S ← χn×n,E ← χn×m,
and a bit σ ← {0, 1}, then the adversary repeatedly chooses messages Mi ∈ Zn×nq for i = 1, . . . , k
and sends them to the challenger, who replies either with uniformly random matrices Ci ∈ Zn×mq

if σ = 0, or with ciphertexts Ci := MatEncsk(Mi) = S−1 × (MiG + Ei) if σ = 1, where Ei ←
ψ[E,MiG], for i = 1, . . . , k. The adversary eventually outputs a guess σ′ for σ, and is considered
successful if σ′ = σ with probability significantly larger than 1/2.

We show that an adversary Adv with a noticeable advantage ε can be transformed into a
distinguisher between MiNTRUs and the uniform distribution over Zn×mq , with an advantage close
to ε. The distinguisher D receives as input A ∈ Zn×mq that is either an instance of MiNTRUs or a
uniformly random matrix, and it interacts with the adversary Adv as follows:

When receiving a matrix Mi from Adv, the distinguisher D draws a sample Ri ← G−1(MiG),
and replies with the “ciphertext” Ci := ARi mod q. When Adv eventually outputs a guess σ′, the
distinguisher D outputs the same guess. We next show that the distinguishing advantage of D is
very close to ε.

If A is a uniformly random matrix in Zn×mq then, by the leftover hash lemma, each Ci = A×
G−1(something) mod q is statistically close to uniformly random matrices in Zn×mq and independent
of A. On the other hand, if A = S−1 × (G−E) is an instance of MiNTRUs, then we have

Ci = A×G−1(MiG) = S−1 ×
(
G×G−1(MiG)−E×G−1(MiG)

)
= S−1 ×

(
MiG−E×G−1(MiG)

)
,

which is identical to the distribution produced by our encryption procedure.

4.3 Hardness of MiNTRU from LWE with a Trapdoor

Here we prove the reduction alluded to in Section 1.2. We define a trapdoor oracle for an arbitrary
matrix B ∈ Zn×mq as an oracle which takes as input B, a vector v ∈ Znq , and outputs a discrete
Gaussian integer vector x ∈ Zm conditioned on Bx mod q = v. Repeated calls to the oracle are
assumed to use independent random coins. Further, we assume the oracle’s distribution samples
above the smoothing parameter of

Λ⊥q (B) = {x ∈ Zm : Bx = 0 mod q}

for a uniformly random B, for some negligible function ε(n). In general, the smoothing parameter
of Λ⊥q (B) is just above the smoothing parameter of Zm, for some negligible ε(n), when m > n log q,
[43, Lemma 2.4].

Let n-secret LWE define the distribution

{(A,B = SA + E) : A← Zn×mq ,S← Zn×nq ,E← χn×m}

for some distribution χ. Next, we show the pseudorandomness of MiNTRU follows from the n-secret
LWE distribution with a trapdoor oracle for B. Let G ∈ Zn×m′q be any formulation of the gadget

matrix. (G = [0|I|2I| · · · |2log q−1I] ∈ Zn×n(log q+1)
q in the MiNTRU definition.)

15

Proposition 4.3. Let n ∈ N, q < 2poly(n), χ be a distribution over Zq, m ≥ n log q, and m′ be
the number of columns in the G-matrix. Further, let q = ω(

√
m). Then, the pseudorandomness

of MiNTRU with error distribution χn×m ·B−1(G) follows from the pseudorandomness of n-secret
LWE with a trapdoor oracle for B.

Proof. We show a reduction from the n-secret LWE with a trapdoor oracle for B to MiNTRU with
error distribution χn×m ·B−1(G). Given as input a pair of matrices (A,B), we call m′ times the
trapdoor oracle for B to get X← B−1(G). Then the reduction outputs A×X mod q. Notice when
(A,B) is generated uniformly and independently, then AX mod q is negligibly close to uniformly
random by leftover hash lemma, along with Lemmas 2.3 and 2.4. Conversely, we have S−1 ∈ Zn×nq

exists with high probability and A = S−1×(B−E) mod q when (A,B) is sampled from the n-secret
LWE distribution. Therefore,

A×B−1(G) = S−1 × (G−EB−1(G)) = S−1 × (G−E′) mod q.

So AX mod q is an instance of MiNTRU with the desired error distribution.

Remark. There is an identical reduction from n-secret LWE with a trapdoor for B with small
secrets to MiNTRUs.

5 Converting Regular Expressions to Automata

In real world applications, regular languages or finite automata are often represented by regular
expressions, which have a very compact form and are convenient to store. So it is important for
our scheme to be useful when NFAs are specified using regular expressions. In this section we
present an efficient method to convert regular expressions to NFAs of relatively small sizes, and we
discuss how to find a suitable NFA to bound the noise growth. We assume the reader has some
familiarity with regular languages, regular expressions, and finite automata. See Appendix A for
basic notation and definitions.

Partial derivatives and NFAs. Let Σ be a finite alphabet, and RE be the set of all regular
expressions over Σ. We consider the basic operations such as union (“+”), concatenation (“·”), and
Kleene star (“∗”) on regular expressions. For any regular expression e, the language of e is denoted
by L(e). To convert a regular expression to an NFA, we start with Antimirov’s partial derivative
construction [4], which is an elegant extension of Brzozowski’s derivative construction [15] to NFAs.
For any symbol a ∈ Σ, the partial derivative of e w.r.t. a, denoted as ∂a(e), is a set of regular
expressions defined inductively as

∂a(ε) = ∅, ∂a(e0 + e1) = ∂a(e0) ∪ ∂a(e1), ∂a(e
∗) = ∂a(e)e

∗

∂a(ai) =

{
{ε} if ai = a
∅ otherwise

∂a(e0 · e1) =

{
∂a(e0)e1 ∪ ∂a(e1) if ε ∈ L(e0)
∂a(e0)e1 otherwise

where e, e0, e1 range over RE. The partial derivative of e w.r.t. any string is ∂ε(e) = {e} and
∂ua(e) =

⋃
{∂a(f) | f ∈ ∂u(e)} where u ∈ Σ∗ and a ∈ Σ. A regular expression e′ is a partial

derivative term of e if e′ is an element of ∂w(e) for some w ∈ Σ∗, and ∂(e) is the set of all partial
derivative terms of e.

16

Definition 1 (Partial derivative NFA). For any regular expression e, the partial derivative NFA
of e is MPD(e) = (Q,Σ, δ, QI , QF), where Q = ∂(e), QI = {e}, QF = {e′ ∈ ∂(e) | ε ∈ L(e′)}, and
for any e′ ∈ Q and a ∈ Σ, δ(e′, a) = ∂a(e

′).

Remark. It was shown in [4] that ∂(e) is a finite set (with respect to syntactic equality on regular
expressions). In fact, |∂(e)| ≤ r+ 1 where r is the number of occurrences of alphabet symbols in e.

The language of e satisfies L(e) =
⋃
a∈Σ a · ∂a(e). It follows that the language accepted by

MPD(e) is exactly L(e).

Ambiguity measure. As will be shown later, when evaluating an encrypted NFA, the noise
growth is closely related to the amount of nondeterministic choices of the NFA. Here we describe
some notions that characterize this quantity. LetM = (Q,Σ, δ, QI , QF) be an NFA. For any string
w = w1 · · ·wk where w1, . . . , wk ∈ Σ, a path of w from state s to state t is a finite sequence of
states s = si0 , si1 , . . . , sik = t such that sij ∈ δ(sij−1 , wj) for all 1 ≤ j ≤ k. A path is accepting if
s ∈ QI and t ∈ QF . The degree of ambiguity of M, denoted as da(M, k), is the maximal number
of accepting paths for a string of length k. If da(M, k) ≤ 1 for all k > 0, then we say M is
unambiguous.12 We say that M is finitely ambiguous if sup{da(M, k) | k ≥ 0} < ∞, and M
is infinitely ambiguous otherwise. Clearly da(M, k) ≤ |Q|k+1 for any NFA. To upper bound the
quantity da(M, k) using a function of k, we can define the degree of growth of ambiguity of M,
denoted as deg(M), to be the minimal degree of a polynomial h(·) such that da(M, k) ≤ h(k) for
all k ≥ 0. If no such polynomial exists, we simply set deg(M) = ∞. Note that M is finitely
ambiguous if and only if deg(M) = 0. It was shown in [54] that deg(M) can be computed in time
O(r6|Σ|) for any NFA M with r states.

On optimizing NFA. For our application of evaluating encrypted NFA, an optimal NFA should
be such that its encryption can be correctly evaluated on as many strings as possible. Concretely,
we want to find an NFA such that the noise term at the end of evaluation is small enough for a
successful decryption. Recall that (n, q) is the lattice parameter in our scheme, b is the maximum
l∞ norm on plaintext vectors, and χ is an error distribution from which we sample noise terms.
As we assume the first state will be the only initial state in all our NFAs, we can encrypt the
initial state vector with no noise. As a result, we obtain the following bounds on the noise due to
homomorphic evaluation of NFAs, which can be bounded using the ambiguity measures of M.

Proposition 5.1. For any n ≥ 1, if M is an NFA with r ≤ n states, and w a string of length
k, the noise vector e(k) at the end of homomorphic evaluation of encrypted M on w satisfies the
following bounds:

• If M is unambiguous, then ‖e(k)‖∞ ≤ bnkχ logb q.

• If M is finitely ambiguous, then ‖e(k)‖∞ ≤ bnrkχ logb q.

• If M is infinitely ambiguous, then ‖e(k)‖∞ ≤ bnkdeg(M)+1χ logb q.

12Notice that a DFAM has da(M, k) ≤ 1 for all k ≥ 0, but the converse is not necessarily true. An NFA can have
multiple nondeterministic choices at every state but still satisfies da(M, k) ≤ 1, in such cases at most one of these
choices could lead to a final state.

17

Notice that both the number of states and the degree of ambiguity contribute to the bound on
the noise growth. To find a small noise growth for the general case of processing an arbitrary long
input string, we can try to solve the following optimization problem on NFA minimization with
bounded ambiguity.

Definition 2 (NFA Minimization with Bounded Ambiguity Problem). For a given NFA of r states
and a function B : N→ N, find an equivalent NFA M with a minimal number of states such that
da(M, k) ≤ B(k) for all k ≥ 1.

A closely related problem is to find a minimal NFA M with a given bound on deg(M). Con-
versely, we can consider a similar minimization problem of finding an NFAM with minimal deg(M)
when given a regular expression and a bound on the number of states. These problems seem to
be hard in general as evidenced by several exponential separation results in automata theory, and
we briefly mention a few. It was shown in [37] that, for each r > 0, there exists an NFA of r
states such that the minimal equivalent NFAM′ of bounded deg(M′) have 2r− 1 states.13 With a
more strict bound on the ambiguity, it was known [32] that there exist NFAs of r states such that

the equivalent finitely ambiguous NFAs have at least 2Ω(r1/3) states. A more tractable problem of
finding a minimal unambiguous NFA is NP-complete [33, 10].

On the other hand, unambiguous NFAs can have much smaller size than equivalent DFAs. A
well-known example is the language Lr = (0 + 1)∗0(0 + 1)r−2 for any r ≥ 2: its partial derivative
NFA has r states and is unambiguous, but its minimal equivalent DFA requires 2r−1 states [41].
The exponential upper bound 2r can actually be met: it was shown in [38] that there exists a series
{Mr}r≥1 of unambiguous NFAs such thatMr has r states but the minimal equivalent DFA ofMr

has 2r states. Notice that, if the size of the given regular expression is small, the bound on the size
of the noise is dominated by the degree of ambiguity, which is same for unambiguous NFAs and
DFAs. So we can exploit the fact that our scheme supports homomorphic encryption of NFAs and
try to find a small unambiguous NFA, which can be much more efficient than encrypting DFAs.

Some particular useful classes of regular languages are the pattern matching languages L such
that L = Σ∗KΣ∗, L = KΣ∗, or L = Σ∗K where K is a finite set of strings. One can check using
the criterion in [54] that the partial derivative NFA for such a language is unambiguous, but its
minimal equivalent DFA may have exponentially many states. Even if K can be specified using a
DFA of m states, the minimal equivalent DFA of L may still have 2m−2 + 1 states. As our scheme
supports encryption of NFAs, pattern matching on encrypted patterns can be much more efficient
than previous approaches via DFAs.

6 Implementation and Performance

This section describes a proof of concept implementation of our scheme14and compares its per-
formance with the HAO15 matrix-FHE scheme [29] when applied to homomorphic evaluation of
encrypted NFAs.

Implementation. We implemented our scheme in C++ using the NTL library (version 10.5.0)
for a power of two modulus, q, and we performed experiments on an Intel i7-2600 3.4 GHz CPU.

13Note that deg(M′) is bounded if and only if da(M′, k) is at most a polynomial in k for all k > 0.
14The source code of our proof-of-concept implementation can be accessed at https://www.dropbox.com/s/

10g2nocx3pmyu4t/henfa.zip

18

Input Length (4k) NFA Enc. Time Matching Enc. NFA RAM used

256 bit S.L. 16.35 sec 1.53 sec 66Mb 172Mb

512 bit S.L. 16.66 sec 3.34 sec 66Mb 172Mb

1024 bit S.L. 16.53 sec 6.63 sec 66Mb 172Mb

16384 bit S.L. 16.76 sec 98.97 sec 66Mb 172Mb

65536 bit S.L. 16.42 sec 394.47 sec 66Mb 172Mb

Table 1: Running times for each function along with memory for a 1024-state NFA accepting the
language (0 + 1)∗0(0 + 1)r−1 for r = 11. “NFA Enc. Time” is the time to encrypt the NFA,
“Matching” is the time to evaluate an encrypted NFA on an input of k symbols, “Enc. NFA” is the
memory storage for the encrypted NFA, and the last column measures the total RAM used during
encryption, evaluation, and decryption. Total RAM usage was measured with the “sys/resource.h”
library in unix.

The implementation is naive in that it only uses NTL’s native functionality with no further op-
timizations. It can be done in a few hundred lines of code and a few days’ programming effort.
There are many opportunities for optimization since the code was written for simplicity and not
efficiency. Despite this, we noticed exceptionally fast evaluation times as listed in Table 1.

In our experiments, we set lattice parameters to n = 1024, q = 242, and α =
√

2n/q. We kept
the modulus both as a power of two and as a power of the maximum l∞ norm b on plaintext vectors
in order to take advantage of bit-shifting instead of multiplications and divisions modulo q. The
noise matrices Ei ← χn×mq and the secret keys S← χn×nq were chosen as uniformly random binary
matrices with the latter being invertible modulo q.

Notice that MiNTRUs can be cryptanalyzed by NTRU attacks like dimension reduction [40] ,
the hybrid attack [31], and the overstretched attack [34] for key recovery. We use the methods in
[34] to estimate the concrete security of our scheme, whish shows that our scheme achieves 51 bits
of security with these parameters. More detailed analysis can be found in Section D.

We conducted tests on r-state partial derivative NFAs accepting the pattern-matching languages
(0 + 1)∗0(0 + 1)r−1 with finite ambiguity, for some r smaller than the lattice dimension n. Notice
that the equivalent minimal DFA’s have 2r−1 states. In the experiments, we pad the transition
matrices to n-dimensional matrices by adding transitions from nonreachable states to final states
to increase ambiguity, and hence we effectively obtain n-state NFAs. The strings scanned were
randomly generated. At the end of each scan, our code checked for any decryption errors. We
observed no decryption errors nor noise overflow. The experiment results for r = 11 are listed in
Table 1, where time was measured using C++’s “time.h” library.

Consider the worst case where the NFA has infinite ambiguity, but bounded degree of growth of
ambiguity. Then the final noise term e(k) has norm ‖e(k)‖∞ ≤ bnkdeg(M)+1χ logb q as discussed in
the previous section. By setting the modulus just above the error growth, we see that the bit length
of the modulus is linear in deg(M) + 1. Now as we view total memory for the encrypted NFA,
n2|Σ| log2(q) logb(q) bits, we see that efficiency is quadratic in NFA’s number of states and quadratic
in the degree of growth of ambiguity (though we have some control over logb(q) by choosing a large
base b). This gives us an exact relation between the number of states, the NFA’s ambiguity, and
performance.

19

Lattice parameters
n = 1024, q = 242 n = 1024, q = 233 n = 4096, q = 273

Ours HAO15 Ours HAO15 Ours HAO15

Unambiguous 564918 141229 1404 351 8.724e13 2.181e13

Finitely ambiguous 551 137 1 - 2.130e10 5.325e9

Infinitely ambiguous 82 65 - - 44352 35202

Bit security 51 98 108 134 103 231

Table 2: Maximal lengths of strings can be scanned on any n-state NFA in both schemes without
decryption error. In some cases the maximal length is less than 1, which is denoted by “-”. In all
cases, the noise parameter is set to α =

√
2n/q. The bit security of our scheme is estimated using

the methods of [34] with more detailed analysis in Section D. For HAO15, we use the on-line LWE
bit security estimator https://bitbucket.org/malb/lwe-estimator to estimate the time for a
uSVP attack as in [1].

Performance improvement over HAO15. Now we compare the performance of our scheme
with the HAO15 matrix-FHE scheme for homomorphic evaluation of encrypted NFAs. Let M be
an NFA of r ≤ n states, where n is the lattice dimension, and let k be the length of the string to
be scanned on M. For the running time, the computational complexity of k homomorphic matrix
multiplications in the HAO15 scheme, assuming naive matrix-vector multiplication of complexity
O(n2), is O(k(r + n)2 log q). On the other hand, the complexity of our homomorphic evaluation
procedure is O(kn2 log q). So using the same parameter and matrix multiplication algorithm, we
expect our scheme runs three times faster than an implementation of the HAO15 scheme.

To compare the capabilities of homomorphic NFA evaluation, we apply the NFA ambiguity
analysis technique as in Proposition 5.1 to the HAO15 scheme. We can rewrite Equation 1 to
obtain the following bound on the l∞ norm of the final noise vector ek:

‖ek‖∞ ≤ χ(n+ r) log q + χ(n+ r) log q

k∑
l=2

da(M, l) + χda(M, k), (6)

which must be bounded away from q/4 for successful decryption of the final ciphertext vector.
Using Proposition 5.1 and the bound in Equation 6, one can determine each scheme’s capability

of homomorphic NFA evaluation. For concrete results, we consider three cases of the ambiguity
of M:

1. M is unambiguous, so da(M, l) ≤ 1;

2. M is finitely ambiguous, so da(M, l) ≤ r; and

3. M is infinitely ambiguous and its degree of growth of ambiguity is deg(M) = 2, so da(M, l) ≤
l2.

Furthermore, we consider three sets of lattice parameters for various bit security estimates and
maximal sizes r for M. We list in Table 2 the maximal lengths of strings can be scanned without
decryption error using both schemes on any n-state NFA. The results imply that there exist tradeoffs
among the bit security level, the maximal length of strings can be scanned, and the running time.

20

Potential Optimizations. One potential optimization is parallelization through the unused
states. Say we must evaluate a long string (10000 bits) but only use a 100 state NFA. Then,
we can evaluate ten such NFAs in parallel by setting the transition matrix for symbol a ∈ Σ as the
block diagonal matrix with the blocks as the smaller transition matrices in the small parameter
setting. The total number of states must stay above a few hundred for this corresponds to the
lattice dimension of the underlying lattice problem.

Let G = In ⊗ gt for gt = (1, b, · · · , blogb(q)−1) as in [43]. We expect to see smaller noise growth
via a randomized bit decomposition for the decomposition of the encrypted state vector, as used in
[3]. This can be done with a simple tweak to Babai’s nearest plane algorithm [5] on the G-matrix’s
null lattice Λ⊥q (G) = {x ∈ Zm : Gx = 0 mod q} and its cosets.

Acknowledgment

We thank Pierre-Alain Fouque and Paul Kirchner for their helpful discussions as well as the anony-
mous reviewers for their helpful feedback and suggestions.

References

[1] M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W. Postlethwaite, F. Virdia,
and T. Wunderer. Estimate all the {LWE, NTRU} schemes! IACR Cryptology ePrint Archive,
2018:331, 2018.

[2] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - A new
hope. In USENIX Security Symposium, pages 327–343. USENIX Association, 2016.

[3] J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In J. A. Garay
and R. Gennaro, editors, Advances in Cryptology - CRYPTO 2014, Part I, pages 297–314.
Springer, 2014.

[4] V. M. Antimirov. Partial derivatives of regular expressions and finite automaton constructions.
Theor. Comput. Sci., 155(2):291–319, 1996.

[5] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986.

[6] S. Bai and S. D. Galbraith. An improved compression technique for signatures based on
learning with errors. In Topics in Cryptology - CT-RSA 2014 - The Cryptographer’s Track
at the RSA Conference 2014, San Francisco, CA, USA, February 25-28, 2014. Proceedings,
pages 28–47, 2014.

[7] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers.
Mathematische Annalen, 296(1):625–635, 1993.

[8] A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor searching
with applications to lattice sieving. In SODA, pages 10–24. SIAM, 2016.

21

[9] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric
encryption: Analysis of the DES modes of operation. In Proceedings of 38th Annual Symposium
on Foundations of Computer Science (FOCS’97), pages 394–403. IEEE Press, 1997.

[10] H. Björklund and W. Martens. The tractability frontier for NFA minimization. J. Comput.
Syst. Sci., 78(1):198–210, 2012.

[11] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. In R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417 of Lecture Notes
in Computer Science, pages 868–886. Springer, 2012.

[12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory, 6(3):13, 2014.

[13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning
with errors. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 575–584.
ACM, 2013.

[14] Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In M. Naor, editor,
Innovations in Theoretical Computer Science, ITCS’14, pages 1–12. ACM, 2014.

[15] J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.

[16] Y. Chen. Réduction de réseau et sécurité concréte du chiffrement complétement homomorphe.
PhD thesis, Paris 7, 2013.

[17] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic encryption for arithmetic of
approximate numbers. In T. Takagi and T. Peyrin, editors, Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, vol-
ume 10624 of Lecture Notes in Computer Science, pages 409–437. Springer, 2017.

[18] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, pages 3–33. Springer,
2016.

[19] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster packed homomorphic opera-
tions and efficient circuit bootstrapping for TFHE. In Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology and Infor-
mation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, pages 377–408.
Springer, 2017.

[20] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé.
Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(1):238–268, 2018.

22

[21] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryp-
tology ePrint Archive, 2012:144, 2012.

[22] N. Gama, M. Izabachène, P. Q. Nguyen, and X. Xie. Structural lattice reduction: Gener-
alized worst-case to average-case reductions and homomorphic cryptosystems. In Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II, pages 528–558. Springer, 2016.

[23] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM
Symposium on Theory of Computing – STOC 2009, pages 169–178. ACM, 2009.

[24] C. Gentry, S. Gorbunov, and S. Halevi. Graph-induced multilinear maps from lattices. In
Y. Dodis and J. B. Nielsen, editors, Theory of Cryptography - 12th Theory of Cryptography
Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, volume
9015 of Lecture Notes in Computer Science, pages 498–527. Springer, 2015.

[25] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In C. Dwork, editor, Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 197–
206. ACM, 2008.

[26] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti and J. A. Garay,
editors, Advances in Cryptology - CRYPTO 2013, Part I, pages 75–92. Springer, 2013.

[27] S. Halevi and V. Shoup. Faster homomorphic linear transformations in HElib. IACR Cryptology
ePrint Archive, 2018:244, 2018.

[28] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[29] R. Hiromasa, M. Abe, and T. Okamoto. Packing messages and optimizing bootstrapping in
GSW-FHE. In Public-Key Cryptography - PKC 2015 - 18th IACR International Conference
on Practice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 -
April 1, 2015, Proceedings, pages 699–715, 2015.

[30] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In
J. Buhler, editor, ANTS, volume 1423 of Lecture Notes in Computer Science, pages 267–288.
Springer, 1998.

[31] N. Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against
NTRU. In A. Menezes, editor, Advances in Cryptology - CRYPTO 2007, 27th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings,
volume 4622 of Lecture Notes in Computer Science, pages 150–169. Springer, 2007.

[32] J. Hromkovic and G. Schnitger. Ambiguity and communication. Theory Comput. Syst.,
48(3):517–534, 2011.

23

[33] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM J. Comput., 22(6):1117–
1141, 1993.

[34] P. Kirchner and P. Fouque. Revisiting lattice attacks on overstretched NTRU parameters. In
EUROCRYPT (1), volume 10210 of Lecture Notes in Computer Science, pages 3–26, 2017.

[35] T. Laarhoven. Search Problems in Cryptography. PhD thesis, Eindhoven University of Tech-
nology, 2015.

[36] C. Lee and A. Wallet. Lattice analysis on mintru problem. IACR Cryptology ePrint Archive,
2020:230, 2020.

[37] H. Leung. Separating exponentially ambiguous finite automata from polynomially ambiguous
finite automata. SIAM J. Comput., 27(4):1073–1082, 1998.

[38] H. Leung. Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput.
Sci., 16(5):975–984, 2005.

[39] A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234, 2012.

[40] A. May and J. H. Silverman. Dimension reduction methods for convolution modular lattices.
In Silverman [50], pages 110–125.

[41] A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars, and for-
mal systems. In 12th Annual Symposium on Switching and Automata Theory, East Lansing,
Michigan, USA, October 13-15, 1971, pages 188–191, 1971.

[42] D. Micciancio. Improving lattice based cryptosystems using the hermite normal form. In
Silverman [50], pages 126–145.

[43] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
D. Pointcheval and T. Johansson, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer
Science, pages 700–718. Springer, 2012.

[44] D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian mea-
sures. In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October
2004, Rome, Italy, Proceedings, pages 372–381. IEEE Computer Society, 2004.

[45] G. Pataki and M. Tural. On sublattice determinants in reduced bases. arXiv preprint
arXiv:0804.4014, 2008.

[46] C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case assumptions on
cyclic lattices. In S. Halevi and T. Rabin, editors, Theory of Cryptography, Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings,
volume 3876 of Lecture Notes in Computer Science, pages 145–166. Springer, 2006.

[47] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6), 2009.

24

[48] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In
Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

[49] C. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving
subset sum problems. Math. Program., 66:181–199, 1994.

[50] J. H. Silverman, editor. Cryptography and Lattices, International Conference, CaLC 2001,
Providence, RI, USA, March 29-30, 2001, Revised Papers, volume 2146 of Lecture Notes in
Computer Science. Springer, 2001.

[51] N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Des. Codes Cryptog-
raphy, 71(1):57–81, 2014. Early verion at http://eprint.iacr.org/2011/133.

[52] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption
over the integers. In Advances in Cryptology - EUROCRYPT’10, volume 6110 of Lecture Notes
in Computer Science, pages 24–43. Springer, 2010.

[53] B. Wang, X. Wang, R. Xue, and X. Huang. Matrix FHE and its application in optimizing
bootstrapping. The Computer Journal, page bxy088, 2018.

[54] A. Weber and H. Seidl. On the degree of ambiguity of finite automata. Theor. Comput. Sci.,
88(2):325–349, 1991.

[55] S. Yu. Handbook of formal languages, vol. 1. chapter Regular Languages, pages 41–110.
Springer-Verlag, Berlin, Heidelberg, 1997.

A Definitions on Regular Expressions and NFA

We recall some standard definitions about regular languages and finite automata [55]. Let Σ be a
finite alphabet, and Σ∗ the free monoid generated by Σ. A string w is an element of Σ∗, which can
be written as a finite sequence of symbols w = w1w2 · · ·wk where w1, . . . , wk ∈ Σ, and its length is
|w| = k. The empty string is denoted by ε, which is the neutral element of Σ∗. The concatenation
of two strings u = u1 · · ·um and v = v1 · · · vn is a string uv = u1 · · ·umv1 · · · vn. A language over Σ
is a subset of Σ∗. For any languages L and K, we consider the following regular operations: (union)
L ∪K, (product) LK = {uv | u ∈ L, v ∈ K}, and (Kleene star) L∗ = ∪i≥0L

i, where L0 = {ε}, and
Li = LLi−1 for i > 0. Regular languages are the smallest class of languages containing the basic
languages ∅, {ε}, and {ai} for all ai ∈ Σ that are closed under regular operations.

A nondeterministic finite automaton (NFA) over Σ is a quintuple M = (Q,Σ, δ, QI , QF), where
Q = {s1, . . . , sn} is a finite set of states, δ : Q × Σ → ℘(Q) is a transition function, QI ⊆ Q
is the set of initial states, and QF ⊆ Q is the set of final states. We can extend δ to a function
δ : Q×Σ∗ → ℘(Q) over strings in the natural way. Without loss of generality, we assume that all our
NFAs have a single initial state s1. A string w ∈ Σ∗ is accepted by an NFA M if δ(s1, w)∩QF 6= ∅.
The set of all the strings accepted by an NFA M is called the language of M , and it is denoted by
L(M). A deterministic finite automaton (DFA) is an NFA such that δ(s, ai) is a singleton set for
all s ∈ Q and ai ∈ Σ, and |QI | = 1.

A regular expression over Σ is a formal expression generated by the following grammar rules:

RE→ ε | ai | (RE + RE) | (RE · RE) | (RE)∗,

25

where ai ranges over Σ. The operator ∗ takes the highest precedence, followed by ·, and then by
+. The parentheses can be omitted when there is no ambiguity. The operator · is usually omitted
as well, and concatenations can be written as juxtapositions of regular expressions. For a regular
expression e, its language L(e) can be defined inductively as follows:

L(ε) = {ε}, L(ai) = {ai},
L(e0 + e1) = L(e0) ∪ L(e1), L(e0 · e1) = {uv | u ∈ L(e0), v ∈ L(e1)},
L(e∗) = ∪i≥0L(e)i,

where ai ranges over Σ, and e0, e1 are regular expressions. For any set R of regular expressions, let
L(R) = ∪e∈RL(e). It is well known that the languages defined by regular expressions are exactly
the regular languages, which are exactly the languages accepted by finite automata.

For any sets R, T of regular expressions, we write RT for the set of regular expressions

RT = {e · f | e ∈ R, f ∈ T},

and we write Re = {f · e | f ∈ R} and eR = {e · f | f ∈ R}; in particular, ∅T = R∅ = ∅e = e∅ = ∅.

B Proofs

In this section we present proofs that are omitted in the main paper.

Proposition 5.1. For any n ≥ 1, if M is an NFA with r ≤ n states, and w a string of length
k, the noise vector e(k) at the end of homomorphic evaluation of encrypted M on w satisfies the
following bounds:

• If M is unambiguous, then ‖e(k)‖∞ ≤ bnkχ logb q.

• If M is finitely ambiguous, then ‖e(k)‖∞ ≤ bnrkχ logb q.

• If M is infinitely ambiguous, then ‖e(k)‖∞ ≤ bnkdeg(M)+1χ logb q.

Proof. Let M = (Q,Σ, δ, {s1}, QF) be an NFA with r states s1, . . . , sr, and for each input symbol
σ ∈ Σ, denote by Mσ ∈ {0, 1}n×n the transition matrix of M on σ (padded with 0s in the extra
columns and rows), where (Mσ)t,s = 1 if t ∈ δ(s, σ), and (Mσ)t,s = 0 othewise. For any t ∈ Q let
Mt = (Q,Σ, δ, Q, {t}) be the NFA obtained from M by setting all states to be initial and t the
only final state. Notice that da(Mt, l) is an upper bound on the total number of paths in M on a
string of length l from any state to t.

Let w = w1 · · ·wk be the string to be scanned on M. For all 1 ≤ i ≤ k, the encrypted state
vector q(i) after reading wi is:

q(i) =

logb q∑
j=0

Cwi,jq
(i−1)
j = βS−1Mwi · · ·Mw1v + S−1(Mwie

(i−1) +

logb q∑
j=0

Ewi,jq
(i−1)
j),

where e(i−1) is the noise term after reading the previous symbol wi−1. As in our assumption, s1

is always the sole initial state in M, we can set the initial noise e(0) = 0 without leaking any
additional information about the NFA M. By expanding all the noise terms, we get

e(k) =

k∑
l=2

Mwk
· · ·Mwl

logb q∑
j=0

Ewl−1,jq
(l−2)
j +

logb q∑
j=0

Ewk,jq
(k−1)
j . (7)

26

Notice that, for any symbol a ∈ Σ, the (t, s)’th entry of Ma is 1 if t ∈ δ(s, a) and it is 0
otherwise. So the (t, s)’th entry of the product Mwk

· · ·Mwl
counts the number of paths from s to

t on the string wl · · ·wk, where 1 ≤ l ≤ k. Let 1 be the vector whose entries are all 1. Then the
t’th entry of the vector Mwk

· · ·Mwl
1 counts the total number of paths from an arbitrary state to

t on this string, which is at most da(Mt, k − l + 1). Thus we have

‖Mwk
· · ·Mwl

logb q∑
j=0

Ewl−1,jq
(l−2)
j ‖∞ ≤ bnχ logb q ·max

t∈Q
{da(Mt, k − l + 1)}.

It follows that the final noise vector e(k) can be bounded by

‖e(k)‖∞ ≤ bnχ logb q ·
k−1∑
l=1

max
t∈Q
{da(Mt, l)}+ bnχ logb q (8)

If M is unambiguous, then da(Mt, l) ≤ 1 for all t ∈ Q and l ≥ 0, so

‖e(k)‖∞ ≤ bknχ logb q.

If M is finitely ambiguous, then for all s, t ∈ Q, the number of paths of w from s to t is at most 1
[54]. So da(Mt, l) ≤ r for all t ∈ Q and l ≥ 0, and e(k) can be bounded by

‖e(k)‖∞ ≤ bknrχ logb q.

For the case whereM is infinitely ambiguous, notice that da(Mt, l) ≤ ldeg(M) for all l ≥ 1, and
we have

‖e(k)‖∞ ≤ bχ logb q

k−1∑
l=1

ldeg(M) + bχ logb q

≤ bnkdeg(M)+1χ logb q.

C Performance comparisons with HAO15

In this section we present a brief analysis of applying the matrix-FHE scheme of HAO15 [29] to
the case of homomorphic evaluation of NFA.

Fix an NFA M of r states and with an alphabet Σ, and let Mσ ∈ {0, 1}r×r for σ ∈ Σ be its
transition matrices on symbol σ. Recall the “leveled version” of the HAO15 scheme as described
in Section 3.1. To encrypt M for homomorphic evaluation on any string of length at most k, we
sample k + 1 secret keys ski for i = 0, 1, . . . , k, and for each σ ∈ Σ, we encrypt Mσ with all keys
ski to get Cσ,i ← HAO.MatEncski(Mσ). We also encrypt the initial state vector v = (1, 0, . . . , 0)t

in a ciphertext c = HAO.VecEncsk0(v).
To scan w = w1 · · ·wk on M, set c0 = c and ci = HAO.Mul(Cwi,i, ci−1) = Cwi,i ×G−1(ci−1).

Then each ciphertext ci satisfies Sici = (
∏1
j=i Mwj)×v+ei for some noise vector ei. By Equation 1,

the l∞ norm of ek can be bounded by

‖ek‖∞ ≤ χN + χN

k∑
l=2

da(M, l) + χda(M, k),

27

which must be bounded away from q/4.
For performance comparison, consider two cases of the ambiguity measures of M:

• M is finitely ambiguous: We have da(M, l) ≤ r for all 1 ≤ l ≤ k, so w.h.p.

‖ek‖∞ ≤ αq(n+ r)(kr + 1) log q,

where α =
√

2n/q is the LWE noise parameter. Thus, in the HAO15 scheme we can homo-
morphically evaluateM on strings of length k ≤ 1

α(n+r)r log q . For example, for an NFA of up

to 1024 states on strings of length up to 137, we need n = 1024 and q = 242. On the other
hand, using our scheme we can evaluateM on strings of length k ≤ q

b2nχr logb q
. So, using our

scheme with the above sets of parameters, we can homomorphically evaluate an NFA of up
to 1024 states on strings of length up to 551.

• M is infinitely ambiguous: We have da(M, l) ≤ ldeg(M), so w.h.p.

‖ek‖∞ ≤ αq(n+ r) log q · (
k∑
l=1

ldeg(M) + 1) ≤ αq(n+ r) log qkdeg(M)+1

Using the same parameters as the above, and assuming that deg(M) = 2 for the NFA M,
we can homomorphically evaluate M on strings of length up to 65 in the HAO15 scheme,
whereas we can homomorphically evaluate M on strings of length up to 82 in our scheme.

Moreover, the computational complexity of k homomorphic matrix multiplications, assuming
naive matrix-vector multiplication of complexity O(n2), is O(k(r + n)2 log q). On the other hand,
the complexity of our homomorphic evaluation procedure is O(kn2 log q).

D Updated Concrete Security Estimate via Fouque and Kirch-
ner’s Analysis

Here we sketch how we estimate the concrete security of MiNTRU using the methods of [34]15. The
attack given in [34] works for any q-ary lattice with a dense sublattice of substantial dimension, not
just algebraically structured lattices. A dense sublattice of high dimension allows the BKZ basis
reduction algorithm [49] to perform better than when run on a truly random q-ary lattice, under
current heuristics.

Recall, the BKZ block reduction algorithm makes oracle calls to an SVP-oracle of dimension b.
Therefore, we estimate security as a single call to the SVP oracle. This is known as the core SVP
hardness model [2]. The best heuristic time complexity for SVP on a rank-n lattice is 2c·n(1+o(1)),
where c = .292 for a classical computer and c = .265 for a quantum computer, [8] and [35, Section
14.2.10], respectively. BKZ with block size b is expected to return a basis with shortest vector
length δrb det(Λ)1/r where δb is the root Hermite factor and r is the rank of the input lattice (b ≤ r).

15The version of this paper presented at ASIACRYPT 2019 did not take this attack into account. Furthermore, [36]
does not attack our original parameter suggestions, |χ| = 2

√
n since we used the LWE estimator https://bitbucket.

org/malb/lwe-estimator. Instead, [36] attacks our toy implementation with binary matrices. Our new estimates
show the original entries in Table 2 had roughly 50, and 25 bits of security for q = 242 and q = 2111, respectively.
The suggested parameters for q = 2883 were not secure (less than ten bits of security).

28

An estimate for the root Hermite factor is, asymptotically, the following function of the block size
[16]

δb ≈
(

b

2πe
(πb)1/b

) 1
2(b−1)

.

Given MiNTRU samples B = S−1(G − E), let Dt := −S−1(In − E0) ∈ Zn×nq be the negated

first square block. We will run BKZ on the lattice Λ⊥q ([I|D]) = {(x1,x2) ∈ Z2n : x1 + Dx2 = 0
mod q.}. This is a 2n-rank lattice with determinant qn which contains the n short vectors given

the columns in B :=

[
In −Et

0

St

]
, and has determinant roughly Ln where L is the expected length

of vectors sampled from χ2n.

D.1 BKZ Predicition

The analysis of [34]’s attack is summarized by Lemma D.1 together with the expected length of
the GSO vectors of Λ⊥q ([I|D]) after running BKZ, [20, Section C]. In short, one makes a prediction
of the GSO shape after running BKZ with block-size b and if this contradicts Lemma D.1, then the
scheme is broken by BKZ. In more detail, one can expect the volume of the shortest n GSO vectors

after running BKZ with block-size b to be, under logarithms, log2(q)
16 log(δb) [20, Figure 5]. Therefore, we

expect the block-size where we see BKZ perform better than expected to be:

log(δb) =
log2(q)

16n log(L)
.

We estimate the concrete security by finding the smallest block size b which attains the above
δb. The script “BKZ security.cpp” at https://www.dropbox.com/s/10g2nocx3pmyu4t/henfa.zip
performs the above when given n, q, and the expected entry length of χ as input.

Lemma D.1. ([45, Lemma 1]) Let Λ ⊂ Rn be a full-rank lattice and r ≥ 1. Then, for any basis

b1, · · · ,bn of Λ with Gram-Schmidt orthogonalization b̃1, · · · , b̃n, any r-dimensional sublattice Λ′,
and any S ⊂ {1, 2, · · · , n} of size r,

det(Λ′) ≥
∏
ti∈S

b̃ti .

29

Ключевая структура исследуемого
алгоритма

Регулярные выражения
▶ Синтаксический разбор
▶ Построение автоматов
▶ НКА, с ε‐переходами и без.
▶ Моделирование переходов через матричную

арифметику.

Криптография на целочисленных решетках
Гомоморфное шифрование

8/26

Регулярные выражения —
неформально

Специальные строки определенного синтаксиса
Помогают распознать или найти другие строки

Например:
«(.*) are (.*) than .*» шаблон
регулярного выражения
которые соответствует тексту string:
”Dogs are smarter than cats”

9/26

Регулярные выражения — формально
Определение
Регулярное выражение (regular expression) в алфавите Σ и
задаваемое им множество допустимых слов (язык) в этом
же алфавите определяются рекурсивно следующим образом:

∅— регулярное выражение, обозначающее пустое
множество слов;

ε— регулярное выражение, задающее пустую строку
(пустое слово);

Пусть σ ∈ Σ— символ из алфавита, тогда σ —
регулярное выражение, задающее множество,
состоящее из этого символа {σ};

Пусть p, q — регулярные выражения, задающие языки P
и Q соответственно. Тогда

▶ p|q — регулярное выражение, задающее P ∪ Q;
▶ pq — регулярное выражение, задающее

конкатенацию языков P и Q;
▶ p∗ — регулярное выражение, задающее P∗ (звезда

Клини);

Других регулярных выражений в алфавите Σ нет;

Т.о. регулярное выражение представляет из себя
строку‐образец (англ. pattern, по‐русски её часто называют
«шаблоном», «маской»), состоящую из символов и
метасимволов и задающая правило поиска в тексте.

10/26

От регулярных выражений к НКА

def demo_regex_to_nfa():
regex = Regex(”(a*|b)”)
print(regex.get_tree_str())
enfa = regex.to_epsilon_nfa()
G = enfa.to_networkx()
write_dot(G, log.dotprefix + ’demo_regex_to_enfa.dot’)

nfa = enfa.remove_epsilon_transitions()
G = nfa.to_networkx()
write_dot(G, LOG.dotprefix + ’demo_regex_to_nfa_no_eps.dot’)

mats, state2index, symbol2index = nfa2_zzq_matrices(nfa)

for sym in symbol2index:
print(f’Матрица переходов для «{sym}»’)
print(str(mats[symbol2index[sym]]))

printverb(’states’, state2index)
printverb(’symbols’, symbol2index)

Operator(Union)
Operator(Kleene Star)
Symbol(a)

Symbol(b)

def nfa2_zzq_matrices(nfa, N=0, ZZq=ZZ):
’’’
Генерит матрицы переходов
* для автомата ‘nfa‘
* в заданном кольце ‘ZZq‘
* выровненную до квадрата N
’’’
N = max(N, len(nfa.states))
state2index = {}

for i, state in enumerate(nfa.states):
state2index[state] = i

mats = {}
symbol2index = {}
for idx, symbol in enumerate(nfa.symbols):

symbol2index[symbol] = idx
mats[idx] = zero_matrix(ZZq, N, N)

for e_state, symbol, next_state in nfa._transition_function.get_edges():
i = state2index[e_state]
j = state2index[next_state]
mats[symbol2index[symbol]][j, i] = 1

return mats, state2index, symbol2index

11/26

Индексы для состояний:
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}
Индексы для символов:

{b: 0, a: 1}

Матрица переходов для «b»

[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 1 0]

Матрица переходов для «a»

[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[1 0 1 0 1 1 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0] 12/26

НКА через матрицу переходов
@dataclass
class RegexByNFA:

regex_str: str
ring = ZZ
N = 0

def __post_init__(self):
self.regex = Regex(self.regex_str)
self.enfa = self.regex.to_epsilon_nfa()
self.nfa = self.enfa.remove_epsilon_transitions()

self.N = max(self.N, len(self.nfa.states))

(self.mats, self.state2index,
self.symbol2index) = nfa2_zzq_matrices(self.nfa, self.N, self.ring)

выставим единицами индексы стартовых состояний
def set_start_state(self):

self.state = zero_matrix(self.ring, self.N, 1)
for state in self.nfa.start_states:

self.state[self.state2index[state]] = 1

def eval_symbol_by_nfa(self, idx):
printv(self.mats[idx])
self.state = self.mats[idx] * self.state
pass

def open_match_text(self, text):
print(f’Матчинг шаблона «{self.regex_str}» в «{text}»\n\n’)
self.set_start_state()

for chr_ in text:
idx = self.symbol2index[chr_]
self.eval_symbol_by_nfa(idx)

for state in self.nfa.final_states:
if self.state[self.state2index[state]] > 0:

return True
return False

def demo_nfa_by_matrix():
r = RegexByNFA(’(a*|b)’)
print(r.open_match_text(’aab’))

Матчинг шаблона «(a*|b)» в «aab»

[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[1 0 1 0 1 1 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]

×
[1]
[1]
[1]
[1]
[1]
[0]
[1]
[0]

⇒
[0]
[0]
[0]
[0]
[0]
[3]
[0]
[0]

[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[1 0 1 0 1 1 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]

×
[0]
[0]
[0]
[0]
[0]
[3]
[0]
[0]

⇒
[0]
[0]
[0]
[0]
[0]
[3]
[0]
[0]

[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 1 0]

×
[0]
[0]
[0]
[0]
[0]
[3]
[0]
[0]

⇒
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]

False

13/26

GGHLM: Введение
Работа НКА описывается матрично‐векторным
произведением
→ схема гомоморфна по матрично‐векторному
произведению;
Отдельно шифруются матрицы и векторы;
Дешифрование необходимо только для
векторов;
Описана процедура работы зашифрованного
НКА;
Для обеспечения семантической стойкости
схемы при шифровании добавляется шум;

14/26

GGHLM: параметры шифрования

n: максимальное число состояний НКА;
q, b: параметры перешифрования;
β: скалирующий коэффициент (отсылка к
Регеву), играющий роль верхней границы шума;

15/26

GGHLM: генерация ключа

S— обратимая матрица;
В качестве собственно ключа выступает пара
матриц S, S−1;

16/26

FHE‐Шифрование: Генерация ключа
@dataclass
class GGHLMKeys:

n: int
logb: int
logq: int
S: object = None
S_inv: object = None

def __post_init__(self):
self.q = 2 ** self.logq
self.b = 2 ** self.logb
self.qq = pow(2.0, self.logb * self.logq)

self.S = zero_matrix(self.ZZq, self.n, self.n)
fill_matrix_zero_01_random(self.S)
det = self.S.det()
if det % 2 == 1:

break
self.S_inv = self.S.inverse_of_unit()

def fill_matrix_zero_01_random(mat):
for i in range(mat.nrows()):

for j in range(mat.ncols()):
mat[i, j] = randrange(2)

GGHLMKeys(
n=9,
logb=7,
logq=6,
S=[0 0 0 0 1 0 1 0 0]

[1 1 1 0 0 1 1 1 1]
[1 0 0 0 0 1 0 0 0]
[0 0 0 0 1 1 1 1 1]
[0 0 0 0 0 1 0 1 0]
[1 0 1 1 0 0 1 0 0]
[0 1 0 0 1 0 1 1 0]
[0 0 0 1 1 1 1 1 1]
[0 0 1 1 1 0 1 1 1],

S_inv=[4398046511102 4398046511103 1 2 4398046511103 1 1 4398046511103 0]
[1 1 0 4398046511102 0 4398046511103 0 1 0]
[2 1 0 4398046511102 1 4398046511103 4398046511103 0 1]
[0 0 0 4398046511103 0 0 0 1 0]
[1 0 1 4398046511103 0 4398046511103 0 0 1]
[2 1 0 4398046511102 1 4398046511103 4398046511103 1 0]
[0 0 4398046511103 1 0 1 0 0 4398046511103]
[4398046511102 4398046511103 0 2 0 1 1 4398046511103 0]
[4398046511103 0 0 1 4398046511103 0 0 0 0]
)

17/26

GGHLM: Шифрование
M—шифруемая матрица, u—шифруемый
вектор;
E— сгенерированный случайный матричный
шум, e— векторный шум;
Шифр:

Enc(M) = βS−1MS+ S−1E, Enc(u) = βS−1u+ S−1e

def gghlm_encrypt_nonsquare(key, msg, log_beta):
beta = 2 ** log_beta
E = get_random_01_matrix(key.ZZq, msg.nrows(), msg.ncols())
return beta * key.S_inv * msg + key.S_inv * E

def gghlm_encrypt_square_matrix(key, msg, log_beta):
beta = 2 ** log_beta
E = get_random_01_matrix(key.ZZq, msg.nrows(), msg.ncols())
return beta * key.S_inv * msg * key.S + key.S_inv * E

18/26

GGHLM: гомоморфность по
произведению

Зашифрованные матрицы перехода Cσ, σ ∈ Σ,
зашифрованный вектор состояний c = Enc(v);
Работа зашифрованного автомата на входе
w = w1...wk:

Cwk...Cw1
c

Дешифрование даст

Dec(Cwk...Cw1
c) = Mwk...Mw1

v

Зашифрованные матрицы будут умножаться с
учётом техники перешифрования (указана
ниже), относительно этого произведения схема
и гомоморфна;

19/26

GGHLM: Дешифрование
Шифротекст:

C = S−1(β ·M+ E) = βS−1 ·M+ S−1E

Поскольку E— вектор
малой нормы, то

C ≈ βS−1 ·M

«Деления в кольцах —
нет» — используем
битовый сдвиг:

M = S · (C >> log β)

def mat_right_shift(mat, shift):
for i in range(mat.nrows()):

for j in range(mat.ncols()):
mat[i, j] >>= shift

def gghlm_decrypt_nonsquare(key, C, log_beta):
Раскодируем неквадратные матрицы (вектора)
res = key.S * C
mat_right_shift(res, log_beta)
return res

def gghlm_decrypt_square_matrix(key, C, log_beta):
Раскодируем квадратные матрицы
return gghlm_decrypt_nonsquare(key, C, log_beta) * key.S_inv

20/26

GGHLM‐шифрование + автомат
На входе:

Матрицы перехода НКАMσ, σ ∈ Σ;
Вектором стартовых состояний v;
На входе строка w = w1...wk

Работа автомата:

(Mwk...Mw1
)v

Соответственно, зашифрованный автомат
представляет из себя всё тот же набор, каждый
элемент которого зашифрован по процедуре,
описанной выше, и происходит перемножение
зашифрованных матриц и вектора.

21/26

GGHLM‐шифрование + автомат

@dataclass
class GGHLMRegexByNFA(RegexByNFA):

key: GGHLMKeys
log_beta: int

def __post_init__(self):
self.N = max(self.key.n, self.N)
self.ring = self.key.ZZq

self.obfs_nfa = [None] * self.sigma * self.key.logq
for i in range(self.sigma):

for j in range(self.key.logq):
entry = i * self.key.logq + j
self.obfs_nfa[

entry
] = gghlm_encrypt_square_matrix(

self.key,
self.mats[i],
self.key.logb * j)

GGHLMRegexByNFA(
regex_str=’(a*|b)’,
key=gghlm.GGHLMKeys(

n=16,
logb=6,
logq=7,
S=[1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0]

[0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 1]
[0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0]
[0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1]
[1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0]
[0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1]
[0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0]
[1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1]
[1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1]
[0 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0]
[1 0 1 1 1 0 1 0 1 0 1 1 1 0 0 0]
[1 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1]
[0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1]
[1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0]
[1 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0]
[1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0],

S_inv=[3871639399736 3464098410290 271693992964 458483613126 560368860488 2886748675242 2003743198109 3243347041008 1579221334103 2003743198109 3362213162929 3837677650616 2122609320031 4126352518140 2037704947230 3769754152375]
[696215856970 1471675795221 4369745053504 4075409894459 3515041033971 1715068330585 707536440010 1952800574429 3775414443895 3639567447413 566029152008 2349020980834 2252796024993 28301457600 1986762323549 2722600221160]
[2581092933157 3775414443895 181129328643 305655742084 373579240325 458483613127 4267859806141 696215856971 3984845230137 1335828798739 775459938252 2558451767077 1415072880021 4216917182461 1358469964820 1047153931216]
[2394303312995 3916921731897 939608392334 1035833348175 288674867524 3752773277815 2898069258281 1137718595537 3079198586924 1432053754581 3198064708847 1177340636177 3492399867891 3458438118770 2649016431399 209430786243]
[2258456316513 554708568968 158488162562 3565983657652 1426393463061 950928975374 435842447047 2258456316512 3486739576371 3367873454449 1228283259858 39622040641 2337700397794 4239558348542 1188661219217 1466015503701]
[2020724072670 2733920804200 3922582023417 2496188560357 118866121922 1545259584982 3090519169965 2020724072669 2733920804200 3090519169965 713196731530 4279180389182 1782991828826 475464487687 832062853452 0]
[1664125706904 3803715901495 2971653048043 3090519169965 356598365765 237732243843 475464487688 1664125706904 3803715901496 475464487687 2139590194591 4041448145339 950928975374 1426393463061 2496188560356 0]
[3464098410290 707536440010 3792395318455 3650888030453 3973524647098 3277308790128 1947140282909 2207513692832 4267859806142 481124779207 3316930830768 1890537367708 1590541917143 605651192649 2054685821790 209430786243]
[2513169434917 2094307862431 4188615724861 3769754152375 3141461793646 1256584717458 837723144972 1256584717458 4188615724861 2303738648674 4188615724861 4188615724861 837723144972 209430786243 628292358729 1675446289944]
[2716939929640 1273565592019 2428265062115 2173551943712 3633907155893 3260327915567 866024602573 3973524647097 645273233290 866024602573 4211256890941 764139355211 1103756846416 1969781448989 2818825177001 1256584717458]
[2122609320031 1590541917143 3775414443895 1698087456025 2564112058597 2547131184037 2371662146915 3379194037489 3894280565817 905646643213 3656548321973 3299949956208 1183000927697 622632067209 4126352518140 2722600221160]
[4143333392700 4324462721343 3299949956208 4194276016381 2682978180519 4092390769020 1064134805775 1001871599055 2230154858912 3996165813178 4369745053504 3181083834286 2965992756523 1098096554896 560368860488 2722600221160]
[441502738567 2864107509162 1805632994906 3871639399737 1799972703387 1409412588500 3237686749488 2954672173482 141507288003 1771671245786 3469758701810 4064089311419 2286757774113 2592413516198 2547131184037 3979184938617]
[2411284187555 3237686749487 4335783304383 169808745602 696215856970 254713118404 1556580168023 4296161263743 3028255963244 90564664321 1245264134418 769799646731 1437714046101 62263206721 1732049205145 3350892579889]
[2920710424362 1918838825308 3599945406773 577349735048 4126352518140 866024602573 2360341563874 2292418065634 33961749120 2360341563874 2767882553320 271693992964 2835806051561 798101104332 611311484169 3769754152375]
[2818825177001 130186704962 2281097482593 1375450839380 1681106581464 4262199514622 147167579521 933948100814 1805632994906 3079198586925 2756561970281 4182955433341 503765945288 2116949028510 1715068330585 3979184938618]

),
log_beta=35

)

22/26

Зашифрованные матрицы перехода
{

0: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],

1: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
}

[
[2292418065635 2801844302441 1766010954267 288674867525 3667868905013 3175423542766 2767882553321 3226366166448 1375450839382 1103756846416 1901857950749 4041448145338 1715068330584 288674867527 3515041033970 2852786926121]

[1318847924180 2915050132843 549048277449 3543342491572 1816953577946 2326379814754 169808745603 4245218640063 1964121157469 3458438118771 1267905300499 4160314267260 96224955841 611311484171 1924499116827 3367873454449]
[2994294214125 3333911705329 2643356139879 192449911684 2445245936675 3582964532210 3311270539251 3616926281333 2382982729955 735837897613 4199936307902 4160314267259 1143378887054 3124480919088 877345185611 435842447045]
[3713151237175 4375405345024 243392535364 3747112986296 3888620274296 169808745602 3158442668208 4194276016380 1641484540824 2167891652194 3645227738934 2615054682278 2082987279389 815081978894 2077326987870 2535810600996]
[3169763251245 1267905300498 3962204064056 1267905300497 2139590194591 3684849779574 3447117535729 2615054682277 435842447045 1743369788184 2575432641637 3090519169965 2099968153951 2733920804197 2416944479077 3130141210606]
[3684849779573 594330609609 1307527341139 594330609609 2377322438436 2139590194592 2852786926121 950928975374 3090519169964 3565983657652 1069795097295 3922582023418 2496188560358 594330609607 1545259584983 3803715901496]
[2258456316513 1782991828826 3922582023417 1782991828825 2733920804200 2020724072670 4160314267259 2852786926123 475464487687 1901857950746 3209385291886 2971653048043 3090519169966 1782991828825 237732243844 2615054682279]
[3594285115252 809421687371 1194321510737 181129328642 2818825177001 526407111368 3633907155892 2886748675242 690555565451 2762222261799 1624503666264 1069795097295 299995450564 1647144832344 1601862500184 1703747747545]
[2722600221159 3979184938618 2303738648673 3350892579889 3769754152375 3141461793646 1256584717458 628292358728 3979184938618 2722600221160 1466015503701 1 3350892579890 1884877076187 1047153931216 2932031007403]
[2071666696349 577349735048 390560114885 1205642093777 4194276016382 67923498242 3022595671723 798101104331 2122609320030 4092390769019 3803715901494 3684849779575 4058429019901 1205642093775 2003743198110 1307527341140]
[2626375265318 2558451767078 3282969081648 3186744125806 390560114886 2801844302441 3735792403254 1035833348176 3628246864372 1318847924179 1505637544341 3565983657652 2116949028511 254713118403 2756561970280 3724471820215]
[1913178533788 3152782376686 192449911683 3781074735415 2767882553320 543387985927 2190532818273 1986762323549 2320719523234 486785070728 2575432641638 3090519169965 215091077762 849043728013 4301821555262 3130141210605]
[299995450563 3135801502125 3673529196533 4392386219583 186789620164 2869767800684 2360341563872 1833934452506 1352809673299 1013192182093 911306934732 2852786926123 1777331537309 1460355212178 362258657287 633952650250]
[3781074735415 2015063781149 328296908165 758479063691 1358469964820 2479207685796 373579240326 543387985929 3441457244211 571689443528 1030173056656 356598365765 3730132111734 2224494567393 4233898057021 3011275088684]
[2886748675243 3039576546284 1409412588502 526407111369 220751369283 1392431713939 390560114886 967909849934 1732049205147 2530150309477 3209385291888 2971653048043 1833934452505 526407111370 1494316961300 2615054682278]
[1013192182096 2541470892518 2366001855394 3798055609976 2207513692831 730177606090 3905601148859 883005477133 2660337014438 1845255035549 4239558348542 3328251413808 3679189488053 866024602574 3215045583407 1228283259857],

[1579221334155 916967226253 2954672173535 3226366166549 220751369335 3311270539300 3107500044576 3022595671776 4347103887526 3226366166446 560368860591 2581092933158 3515041034022 1188661219320 3192404417326 2292418065633]
[2309398940231 3752773277814 2807504593999 1313187632734 984890724532 1579221334140 1233943551415 2433925353673 3945223189572 2779203136359 3515041034045 1930159408348 3390514620566 792440812885 1499977252821 4250878931581]
[1052814222791 611311484167 503765945343 2150910777743 1613183083279 2207513692888 3537682200107 2015063781206 2898069258395 684895273929 373579240435 1720728622104 3809376193068 3724471820323 3594285115251 62263206720]
[1613183083252 2071666696348 1788652120374 1262245009036 4245218640089 2105628445500 2133929903100 2756561970309 1839594744085 2728260512679 288674867581 130186704962 3543342491598 79244081336 2977313339563 2247135733473]
[2020724072614 2733920804201 990551015959 4081070185868 4160314267205 832062853397 3645227738877 3962204064002 2535810600885 1149039178578 1426393462951 1505637544342 3882959982722 4358424470354 396220406407 1703747747546]
[2733920804173 594330609609 1426393463035 950928975323 713196731504 1901857950721 2258456316488 1307527341112 1188661219166 950928975375 118866121870 4279180389182 1545259584958 118866121870 3209385291887 3684849779574]
[3803715901482 1782991828828 4279180389169 2852786926093 2139590194578 1307527341125 2377322438420 3922582023403 3565983657623 2852786926122 356598365738 4041448145339 237732243831 356598365739 832062853453 2258456316513]
[2801844302433 2903729549803 2026384364182 4352764178927 4364084761976 3888620274289 1777331537297 3707490945646 3503720450914 1420733171541 3973524647082 843383436493 3067878003877 3764093860840 1313187632660 2128269611551]
[1256584717440 3141461793646 2303738648655 3560323366096 3769754152356 3769754152357 2094307862413 418861572468 1047153931179 2094307862431 3141461793610 209430786243 3979184938600 1466015503665 2303738648674 4188615724861]
[645273233237 4347103887425 2767882553267 798101104227 1698087455972 3481079284798 560368860436 2275437191020 3667868904908 798101104333 3633907155789 3277308790128 2003743198058 2377322438331 3243347041008 2071666696351]
[2428265062104 3396174912050 192449911672 2501848851854 4075409894449 3956543772526 758479063680 769799646720 3232026457945 3967864355578 2564112058575 2881088383722 4222577473971 4239558348520 2213173984352 1160359761617]
[764139355238 3990505521657 1618843374770 3452777827304 390560114913 1460355212208 3016935380231 2077326987898 22641166135 520746819847 2682978180572 2762222261800 1369790547886 4358424470516 1024512765134 447163030086]
[3073538295341 3345232288370 2960332464939 3299949956081 1375450839316 3039576546220 1318847924116 3045236837739 2501848851748 367918948807 1799972703260 1760350662746 1828274160926 2218834275747 1058474514257 3232026457968]
[1562240459574 339617491205 3537682200083 2009403489690 407540989478 1715068330616 3594285115283 956589266925 3401835203631 3475418993330 696215857031 1607522791703 1301867049650 1743369788247 3299949956207 2315059231713]
[33961749162 1154699470096 1766010954307 967909850016 4024467270821 3192404417367 492445362289 2665997306000 424521864089 967909849933 4126352518221 3413155786610 1494316961342 356598365847 2716939929638 2886748675241]
[339617491231 2750901678759 1533939001968 2349020980887 662254107874 1137718595564 3458438118796 1737709496693 1313187632712 3815036484535 1681106581517 1879216784667 283014576028 2099968154001 2247135733473 3945223189498],

[1511297839152 4330123012864 4313142141592 2258456323091 2801844305731 3362213166219 1664125710195 2462226814526 1986762330128 2971653048043 1867896208206 2496188560357 3141461796935 1205642100357 1528278710421 4211256890941]
[2682978182907 3305610247728 1199981804645 2971653052819 2915050135231 566029154397 2575432644026 1850915329455 2999954510420 515086528327 4386725932840 3130141210606 2513169437304 1432053759357 3322591122288 294335159044]
[3939562901538 4352764178943 2875428095759 2971653055160 3333911708886 775459941810 1109417141496 3107500048084 2790523726518 1981102032028 2711279645236 198110203202 628292362287 2269776906670 2484867977316 4273520097662]
[645273235109 1964121157467 622632069027 2496188563995 4375405346842 3198064710665 2456566521536 1001871600873 1556580171660 3130141210605 3894280569454 752818772171 1884877078006 4352764182581 520746819848 4301821555264]
[3447117532187 4358424470464 316976321583 950928968289 1267905296956 1228283256315 3169763247703 1069795093753 792440805726 633952650250 1822613862381 1822613869466 4398046507563 2535810593912 1624503666264 990551016014]
[2852786924460 118866121921 3447117534070 1545259581662 594330607948 713196729870 3684849777912 1188661217556 2020724069348 2496188560356 3328251410488 3328251413809 4398046509443 1188661215896 3922582023418 1426393463061]
[4160314266374 356598365767 1545259584098 237732242071 1782991827941 2139590193706 2258456315627 3565983656767 1664125705133 3090519169966 1188661217446 1188661219217 4398046510219 3565983655881 2971653048042 4279180389181]
[1120737720470 1250924425939 1930159407843 2020724071657 809421686866 3316930830262 2337700397288 2665997305453 2626375264306 1347149381780 1516958126370 2773542844840 1884877075682 1618843373732 3373533745969 141507288002]
[3141461792475 3350892579888 2722600219989 4398046508764 3979184937448 4188615723690 1466015502531 3141461792475 209430783902 2932031007403 1675446287604 2932031007403 1884877075017 3560323363791 837723144973 418861572487]
[1137718592167 492445362247 1715068327217 118866115185 577349731680 4211256887573 3328251410439 3039576542915 2088647564173 1545259584983 1850915320330 594330609609 2513169431548 1154699463359 4313142138303 254713118404]
[1850915326355 2354681272355 11320582329 3803715900072 2558451766365 3656548321262 3882959982064 1137718594825 28301456178 2535810600997 4148993682797 2892408966762 2513169434205 718857021627 2728260512680 2077326987870]
[305655743810 2473547394276 3458438120493 950928978821 3152782378409 4369745055227 3169763252970 2326379816478 2049025533718 633952650249 3079198590372 1822613869466 2513169436640 1907518245715 2252796024993 3503720450931]
[2988633918521 2847126634601 1726388909546 3922582015257 3135801498046 3469758697730 2813164881399 4177295137740 2116949020350 4081070185980 1601862492024 3486739576372 628292354649 1873556484987 2643356139879 2332040106274]
[4143333394678 1115077429457 1760350664722 2139590198544 2015063783126 1245264136395 1267905302475 3192404419304 2201853405266 2892408966762 854704023486 3367873454449 3769754154352 4030127566252 2032044655709 4165974558780]
[3532021911158 3498060159411 2173551946337 237732249094 3039576548909 2767882555946 2258456319139 2937691301549 1035833353426 3090519169964 560368865739 1188661219217 3141461796271 1681106586715 458483613127 3022595671724]

23/26

Зашифрованные переходы
def match_text_encrypted(self, text):

self.set_start_state()
self.enc_state = gghlm_encrypt_nonsquare(self.key,

self.state, self.log_beta)

print(’state: ’ + str(self.state.T))
print(’encstate: ’ + str(self.enc_state.T))

Это может происходить на «вражеской» территории.
for chr_ in text:

print(f’chr: {chr_}’)
idx = self.symbol2index[chr_]
self.eval(idx)
print(’encstate: ’ + str(self.enc_state.T))

self.state = gghlm_decrypt_nonsquare(self.key,
self.enc_state, self.log_beta)

print(’state: ’ + str(self.state.T))

for state in self.nfa.final_states:
if self.state[self.state2index[state]] > 0:

return True
return False

state: [1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0]

encstate: [3677818636201 4344937057075 951503848730

3357525734013 3671539250297 2316960735896 2381037004746

3027857973997 3393433208345 3752773277816 3916833289842

1732668299529 3305919794922 1690481439294 1099909617023

885879843920]

chr: a

encstate: [1039337337755 147706654157 2740659244127

1756038058514 1630163959396 3905601149556 267920466686

3872987089184 1805093920407 2587292301808 1504289856547

2757101044821 4091582158478 1553615253126 3648731728256

185981005554]

chr: a

encstate: [1966546996231 2378131050888 4382682861015

1844446421787 2682978181648 747158481373 2660337015257

502957332639 2393494700706 3125289533655 3521509939065

289483479964 2248752961639 38004814116 4275945936163

1501594478087]

chr: a

encstate: [670879313551 1441218035529 1540946980184

2037974484199 2037704948303 2682978181215 2533923837979

2485137515618 4298317565924 1192165210524 2037435410039

3603449396091 3229600620722 3826896142655 2833110674037

546622437159]

state: [0 0 0 0 0 95 0 0 0 0 0 0 0 0 0 0]

True

24/26

GGHLM: Гомоморфные переходы с
перешифрованием
def bit_dec(self, state_bd, state):

for i in range(state.nrows()):
t = state[i, 0]
for j in range(self.key.logq):

state_bd[j, i] = t % self.key.b

def eval(self, idx):

work_space = zero_vector(self.ring, self.state.nrows())
state_bd = zero_matrix(self.ring, self.key.logq, self.state.nrows())
temp_state = zero_vector(self.ring, self.state.nrows())
self.bit_dec(state_bd, self.enc_state)
printverb(’enc‐state’, self.enc_state)
printverb(’state‐bd’, state_bd)

for i in range(self.key.logq):
entry = idx * self.key.logq + i
work_space = self.obfs_nfa[entry] * state_bd[i]
temp_state += work_space

printverb(’temp‐state’, temp_state)

for i in range(self.enc_state.nrows()):
self.enc_state[i, 0] = temp_state[i]

«enc_state»:
[1966546996231]
[2378131050888]
[4382682861015]
[1844446421787]
[2682978181648]
[747158481373]
[2660337015257]
[502957332639]
[2393494700706]
[3125289533655]
[3521509939065]
[289483479964]
[2248752961639]
[38004814116]
[4275945936163]
[1501594478087]

«state_bd»:
[7 8 23 27 16 29 25 31 34 23 57 28 39 36 35 7]
[7 8 23 27 16 29 25 31 34 23 57 28 39 36 35 7]
[7 8 23 27 16 29 25 31 34 23 57 28 39 36 35 7]
[7 8 23 27 16 29 25 31 34 23 57 28 39 36 35 7]
[7 8 23 27 16 29 25 31 34 23 57 28 39 36 35 7]
[7 8 23 27 16 29 25 31 34 23 57 28 39 36 35 7]
[7 8 23 27 16 29 25 31 34 23 57 28 39 36 35 7]

«temp_state»:
(670879313551, 1441218035529, 1540946980184, 2037974484199, 2037704948303, 2682978181215, 2533923837979, 2485137515618, 4298317565924, 1192165210524, 2037435410039, 3603449396091, 3229600620722, 3826896142655, 2833110674037, 546622437159)

25/26

Направления для дальнейшего
исследования

Реализация минимального НКА через
производную Брозовского.
Исследование производительности

▶ Теоретической
▶ Python‐реализации
▶ Компиляции через Nuitka

Альтернативные GSW‐схемы шифрования.

26/26

