Курс лекций по теоретической криптографии

Тема 8. Псевдослучайные семейства функций и перестановок

Шокуров А.В.

Определение псевдослучайного семейства функций

Будем рассматривать семейства функций вида

$$F = \bigcup_{n \in \mathbb{N}} F_n = \{f_{n,i} : \mathbb{B}^{l(n)} \to \mathbb{B}^{m(n)}\}_{\substack{n \in \mathbb{N} \\ i \in \mathbb{B}^n}}, \qquad F_n \subseteq \operatorname{Fun}(\mathbb{B}^{l(n)}, \mathbb{B}^{m(n)}),$$

где $I(\cdot),\ m(\cdot)$ — некоторые полиномы, а $\operatorname{Fun}(X,Y)$ — множество всех функций, определённых на X и принимающих значения в Y.

Определение

F называется псевдослучайным семейством функций, если

- Для любой п. в. м. Т. А

$$\left|\Pr_{i}\left[A^{f_{n,i}}(1^{n})=1\right]-\Pr_{\varphi}\left[A^{\varphi}(1^{n})=1\right]\right|=\operatorname{negl}(n),$$

где
$$i \in_{\mathcal{U}} \mathbb{B}^n, \ \varphi \in_{\mathcal{U}} \operatorname{Fun}(\mathbb{B}^{l(n)}, \mathbb{B}^{m(n)}).$$

Функции $f_{n,i}$ и arphi машине A неизвестны, но она имеет доступ к оракулам, возвращающим значения соответствующих функций на заданном машиной A аргументе.

^a То есть полиномиально вычислима функция $(1^n, i, x) \mapsto f_{n,i}(x)$.

Генераторы псевдослучайных функций

В более общем варианте определения *і* выбирается согласно произвольному полиномиально конструируемому распределению. Но это не принципиально, так как в таком случае можно рассматривать равномерное распределение на заполнении «случайной» ленты машины, реализующей это распределение.

То же самое понятие можно рассматривать как особый генератор семейства функций.

Генератор для семейства функций F — это пара алгоритмов (I, C),

- I полиномиальная вероятностная машина Тьюринга: $I(1^n) = i$ индекс (описание) функции в F_n , $i \leftrightarrow f_{n,i} \in F_n$;
- C полиномиальная (детерминированная) машина Тьюринга: для всех n, i и $x \in \mathbb{B}^{l(n)}$ $C(1^n, i, x) = f_{n,i}(x)$.

Генератором псевдослучайных функций будем называть генератор (I,C) для псевдослучайного семейства функций F относительно некоторого семейства вероятностных распределений $\{\mathcal{I}_n\}$.

Семейство $\{f_{n,r}'=f_{n,l(r;1^n)}\}$ (с несколько изменённой индексацией функций) будет удовлетворять определению псевдослучайного семейства функций (относительно семейства равномерных распределений на множествах индексов).

Необходимое условие существования псевдослучайных семейств

Утверждение

Если существует псевдослучайное семейство функций,

то существует псевдослучайный генератор.

Доказательство.

Пусть семейство
$$F=\{f_{n,i}:\mathbb{B}^{l(n)} o\mathbb{B}^{m(n)}\}_{\substack{n\in\mathbb{N}\ i\in\mathbb{B}^n}}$$
 псевдослучайно.

Обозначим:
$$s(n) = \left\lfloor \frac{n}{m(n)} \right\rfloor + 1$$
.

Будем считать¹, что
$$n < 2^{l(n)} m(n)$$
 для всех n , поэтому $s(n) \leqslant 2^{l(n)}$.

Найдутся такие *различные* строки
$$w_{n,1}, \ldots, w_{n,s(n)} \in \mathbb{B}^{l(n)}$$
, что функция $1^n \mapsto (w_{n,1}, \ldots, w_{n,s(n)})$ полиномиально вычислима (например, $w_{n,t}$ — двоичная запись числа $t-1$).

Определим функцию q на аргументах $x \in \mathbb{B}^n$ по всем n:

$$g(x) = f_{n,x}(w_{n,1}) \dots f_{n,x}(w_{n,s(n)}).$$

 $^{^{1}}$ По-хорошему, надо это условие включить в формулировку утверждения, но мы для простоты отбрасываем «крайний» случай, когда I(n) и m(n) почти не растут.

Необходимое условие существования

псевдослучайных семейств

Покажем, что q — псевдослучайный генератор.

- а полиномиально вычислима.
- $g(\mathbb{B}^n) \subset \mathbb{B}^{m(n)s(n)}$,
 - $m(n)s(n) > n \quad \Rightarrow \quad |g(x)| > |x|$ для всех x.
- Рассмотрим произвольную п. в. м. Т. *D* и возьмём п. в. м. Т. *A*:

$$A^h(1^n) = D(1^n, h(w_{n,1}) \dots h(w_{n,s(n)}))$$

для любой функции $h \in \operatorname{Fun}(\mathbb{B}^{l(n)},\mathbb{B}^{m(n)}).$

Если $\varphi \in_{\mathcal{U}} \operatorname{Fun}(\mathbb{B}^{l(n)},\mathbb{B}^{m(n)})$, то $\varphi(y)$ для разных $y \in \mathbb{B}^{l(n)}$ — независимые равномерно распределённые случайные величины.

Следовательно, случайная величина $\varphi(w_{n,1}) \dots \varphi(w_{n,s(n)})$ имеет равномерное распределение на $\mathbb{B}^{m(n)s(n)}$.

$$\left|\Pr\big[\mathsf{D}(1^n,g(\upsilon_n))=1\big]-\Pr\big[\mathsf{D}(1^n,\upsilon_{\mathsf{m}(n)\mathsf{s}(n)})=1\big]\right|=$$

$$=\left|\Prigl[{\it A^{\!f_{n,\upsilon_n}}}(1^n)=1igr]-\Prigl[{\it A^{arphi}}(1^n)=1igr]
ight|=\mathrm{negl}(n)$$
 по условию.

Теорема Гольдрайха—Гольдвассер—Микали

Teopeмa (Goldreich, Goldwasser, Micali)

Если существует псевдослучайный генератор, то для любых полиномов $I(\cdot)$ и $m(\cdot)$ существует псевдослучайное семейство функций $F=\{f_{n,i}:\mathbb{B}^{l(n)}\to\mathbb{B}^{m(n)}\}_{n\in\mathbb{N}}$.

Схема доказательства.

Возьмём псевдослучайный генератор $g,\;g(\mathbb{B}^n)\subset\mathbb{B}^{2n}$ для всех n, и функции

$$g_0(y)=g(y)^{[1\,\ldots n]}, \qquad g_1(y)=g(y)^{[n+1\,\ldots 2n]}, \qquad y\in\mathbb{B}^n,\ n\in\mathbb{N}.$$

Определим функции семейства для $x \in \mathbb{B}^{l(n)}$ по всем n:

$$f'_{n,i}(x) = g_{x^{[l(n)]}}(\ldots g_{x^{[2]}}(g_{x^{[1]}}(i)) \ldots) \in \mathbb{B}^n.$$

Псевдослучайность семейства $F' = \{f'_{n,i}\}$ доказывается от противного: если п. в. м. Т. A отличает функции семейства от случайных, построим п. в. м. Т. B, которая запускает A, выдаёт ей (вместо оракула) значения хитро строящейся функции b и возвращает в конце выход машины a, тогда a будет нарушать определение псевдослучайного генератора a.

Далее «растянем» (до длины m(n)) значения функций семейства F' с помощью их композиции с подходящим псевдослучайным генератором. Полученное семейство F будет таким же псевдослучайным, как и F'.

Псевдослучайные семейства функций для построения шифров

Следствие

Псевдослучайные семейства функций существуют тогда и только тогда, когда существуют односторонние функции.

Псевдослучайные семейства функций можно использовать для построения стойких 2 криптосистем с секретным ключом.

Пусть $\{f_{n,i}\}$ — псевдослучайное семейство функций.

n — параметр стойкости

m — открытый текст, при необходимости дополненный до длины m(n)

- ullet $G \equiv I$: $G(1^n) = I$ секретный ключ
- $E: r \in_{\mathcal{U}} \mathbb{B}^{l(n)}$, $E(r; 1^n, i, m) = m \oplus f_{n,i}(r) = c$ криптограмма Получателю передаётся пара (r, c).
- D: $D(1^n, i, r, c) = c \oplus f_{n,i}(r) = m$

Это система вероятностного шифрования для сообщений фиксированной (для заданного n) длины. Более длиные сообщения разбиваются на блоки длины m(n) и шифруются поблоково. Подобные криптосистемы называются $\underline{бло}$ ковыми.

² В том же смысле, что и для примера потокового шифра на прошлой лекции.

Полиномиально инвертируемые

ПСЕВДОСЛУЧАЙНЫЕ СЕМЕЙСТВА ПЕРЕСТАНОВОК Будем рассматривать семейства перестановок $F=\{f_{n,i}:\mathbb{B}^{l(n)} o\mathbb{B}^{l(n)}\}_{\substack{n\in\mathbb{N}\\i\in\mathbb{B}^n}}$, где $f_{n,i}$ — биекции.

Определение

F — псевдослучайное семейство перестановок, если

- F полиномиально вычислимо;
- Для любой п. в. м. Т. А

$$\left|\Pr_{i}[A^{f_{n,i}}(1^{n})=1]-\Pr_{\pi}[A^{\pi}(1^{n})=1]\right|=\operatorname{negl}(n),$$

где $i \in_{\mathcal{U}} \mathbb{B}^n$, $\pi \in_{\mathcal{U}} \operatorname{Per}(\mathbb{B}^{l(n)})$.

Дополнительное условие:

Определение

F называется полиномиально инвертируемым семейством перестановок, если полиномиально вычислима функция $(1^n, i, y) \mapsto f_{n,i}^{-1}(y)$, где $n \in \mathbb{N}, i \in \mathbb{B}^n, y \in \mathbb{B}^{l(n)}$.

Теорема Луби—Ракоффа

Теорема (Luby, Rackoff)

Если существует псевдослучайное семейство функций, сохраняющих длину, то существует полиномиально инвертируемое псевдослучайное семейство перестановок.

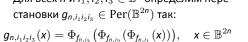
Схема доказательства. Рассмотрим преобразование Φ айстеля Φ , которое превращает произвольную функцию, сохраняющую длину, в перестановку.

$$f:\mathbb{B}^n o\mathbb{B}^n \ \mapsto \ \Phi_f:\mathbb{B}^{2n} o\mathbb{B}^{2n}$$
 для всех $n\in\mathbb{N}$ $\Phi_f(xy)=y(x\oplus f(y))$ $\Phi_f^{-1}(uv)=(v\oplus f(u))u$

Пусть $\{f_{n,i}: \mathbb{B}^n \to \mathbb{B}^n\}$ — псевдослучайное семейство функций.

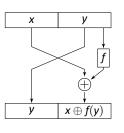
Для всех n и $i_1, i_2, i_3 \in \mathbb{B}^n$ определим пере-

$$g_{n,i_1i_2i_3}(\mathbf{x}) = \Phi_{f_{n,i_2}}(\Phi_{f_{n,i_2}}(\Phi_{f_{n,i_2}}(\mathbf{x}))), \quad \mathbf{x} \in \mathbb{B}^{2n}$$

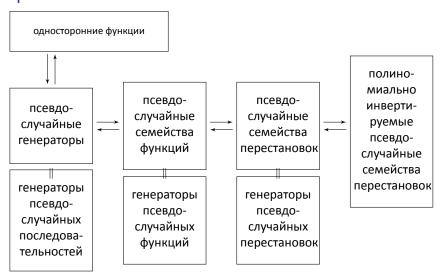


Семейство $\{g_{n,i_1i_2j_3}\}_{\substack{n\in\mathbb{N}\\i_1,i_2,i_3\in\mathbb{B}^n}}$ — очевидно, полиномиально инвертируемое.

Далее доказывается, что оно псевдослучайно.



Критерии существования криптографических примитивов



Построение криптосистемы из полиномиально инвертируемого

псевдослучайного семейства перестановок

Пусть $F = \{f_{n,i} : \mathbb{B}^{l(n)} \to \mathbb{B}^{l(n)}\}$ — полиномиально инвертируемое псевдослучайное семейство перестановок.

n — параметр стойкости

m — открытый текст, при необходимости дополненный до длины I(n)

- $M_n = \mathbb{B}^{I(n)}$
- lacktriangle *G*: $G(1^n) = i \in_{\mathcal{U}} \mathbb{B}^n$ секретный ключ
- $E: E(1^n, i, m) = f_{n,i}(m) = c \in \mathbb{B}^{l(n)}$ криптограмма
- D: $D(1^n, i, c) = f_{n,i}^{-1}(c) = m$

D — полиномиальная м. Т., так как семейство F полиномиально инвертируемо

Такая (блоковая) криптосистема с секретным ключом — IND-CPA-стойкая.

Но если позволить шифровать более длинные сообщения, разбивая их на блоки длины I(n) и применяя к ним перестановку по отдельности, то такая система уже не будет IND-стойкой.

Придумайте метод осуществления угрозы различения двух шифртекстов, если соответствующий оракул

 $\widehat{m{?}}$) на запрос $m=m_1m_2\,\dots m_k\in \mathbb{B}^{k\cdot l(n)}$, где $m_j\in \mathbb{B}^{l(n)}$, возвращает

$$E(1^n, i, m) = f_{n,i}(m_1) f_{n,i}(m_2) \dots f_{n,i}(m_k).$$